
7A-ALO4 624 NAVAL POSTOA4JATE SCHOOL. MNTERtEY CA /92
MICROPROCESSCIOR gVELOPMENT SYSTEM FORt THE ALTOS SERIES MZCROC-E9TClU)

ULSS NIFJIEDSuommmhummusm
mEEEEmhhhEEshI

LEVEL 0'
NAVAL POSTGRADUATE SCHOOL

Monterey, California

DTICAm-ELECTE ..

~SEP2 8 1981

THESIS
Microprocessor Development System

for the ALTOS Series Microcomputers

by

Stephen Michael Hughes

June 1981

Thesis Advisor: M. L. Cotton

-.4 Approved for public release; distribution unlimitedI

-I

SECURITY CLASSIFICATION OP NI 1,409 AG (Wn Dais ater")

REPORT DOCUMENTATION PAGE RZAD INSTRUCTIONPS

V. REPORT MUUER1111 2 ?OvVTACCUION NO. S. RECIPIENT'S CATALOG MNIMEER

4. TITLE (SOO SW6Idtfej S., TYPE OF REPORT 6 PERIOD COVEREO

A Microprocessor Development System -~ Master's Thesi§,
S for the ALTOS Series Microcomputers, I 1981

aPRAFORMING Ono. 49POmy"~dC

7. AUTHOR(@)j 8. C0ONTRACT 00 GRANT wuUM61911to

Stephen Michae1/ Hughes

S. PERFORMING ORGANIZATION NAMC AND ADDRESS IC. P"OG0A~ CEMENT. PROJECT, TASKAREA 6 XOK UNIT MUMOCAS
Naval Postgraduate School
Monterey, California 939'40

II. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT QATE

Naval Postgraduate School /' June 1981 IA9
Monterey, California 93940 is.uwed w PGE

14. MONITORING A09NCY N AMC 6 ADORESS(it difernt true Controlling Office) IS. SECURITY CLASS. (04 this raport)

IS. 3-- ASIFICATION/ OOWNGR1AO&NG

16. DISTRIBUTION STATEMENT (of this Asert)

Approved for public releas ; distribution unlimited

17. OISTRIOUTION STATEMENT (of th. otroet antovettin &fee& 20. It different Im Mov")

IS. SUPPLEMENTARY NOTES

It. KEY WORDS (Continue on Fvor&* sie It floOO*W7 and Identify by 4100* number')

Microprocessor Development System
ALTOS Microcomputer
PRO-LOG STD bus
CP/M, MP/M

20. AIIS? RACY (COR11410 4 rdad 00 If00001 ded~ Identify by NO@&b embe)
An ALTOS series microcomputer is being used as the host computer in a mi-,O
processor development system (MDS). The MDS hardware, consisting of the
PRO-LOG STD bus, a Z80 cpu card, 2K bytes EPROM and 36K bytes random access
memory, is controlled by the host via a single serial 1/O port. The system
provides the capability to develop and test both software and hardware in
the combined CP/M (MP/M) and MDS environments.

IO A 13473 EDITIO or I Nov of is O~sOLET
(Page 1) 5/N1 0 to 3O014 6601 1 SECURITY CLASSIFICATION OF THIS PACE (Mhen Data S~ts'a

Approved 1for Dublic release; distribution unlimited

A Microprocesscr Development System
for trie ALTOS Series icrocomputers

Stepnen licnael HuR!es
Lieutenant, United States Navy

B.S., United States Naval Academy, 1.975

Sutmittea in partial fultillment of tne
requirements for tie deeree of

MASTER OF SCIENCE IN EL2CTRICAL ENGINEERING

from tne

NAVAL POSTGRADUATE SCHOOL
June 1481

Autnor:

Approved by: -- - -- - -- -
Tnesis Advisor

I _eco nd Teader

Awk" Cnairman, Department of icai jn ineering

Dean ot, Scilence and 2n,_Yneertno

Z

ABSTRACT

An ALTOS series icrocomputer Is being used as tne

tost computer in a microprocessor development system (MDS).

The IDS hardware, consistinz of tne PRO-LOG STD Dus, a ZSO

cpu card, 2K bytes .PROM and 36K bytes random access memory,

Is controlled by tne nost via a single serial I/0 port. Tie

system proviaes tne capatility to deveiop and test totr

software and aardware In tue combined CP/M (MP/M) and 'DS

environmentss.

Accen sio For

Ii

3

TABLE OF CONTENTS

I. INTRODUCTION ------------------------------------ 6

It. THE MICROPROCESSOR DEVELOPMENT SYSTEM ------------ -

A. HARDWARE CONSIDERATIONS ------------------- 9

B. SOFTWARE CONSILERATIONS --------------------- 14

C. THE SYSTEM CONTROL SOFTWARE ----------- 14

I. The HOST Control Software ---------------- 15

2. The MLS Onboard Monitor ------------------ 22

III. SYSTEM IMPLEMENTATION AND CUSTOMIZATION 24

A. PUTTING IT ALL TOGETHER ---------------------- 24

B. CUSTOMIZATION ------------------------------- 27

C. SYSTEM LIMITATIONS --------------------------- 31

IV. CONCLUSIONS AND RECOMMENDATIONS ------------------ 36

A. FUTURE HARDWARE ------------------------ 36

B. FUTURE SOFTWARE ------------------------------ 37

APPENDIX A: AMES USERS GUIDE ------------------------ 39

APPENDIX B: HOST AND MrS FLOW CHARTS FOR USER OPTIONS - 61

APPENDIX C: AMES HOST CONTROL SOFTWARE LISTING 71

APPENDIX Z: MES MONITOR SOFTWARE LISTING------ 120

APPENDIX E: MDS MEMORY TEST PROGRAM LISTING ----------- 129

APPENDIX F: SAMPLE MENU LISTING ----------------------- 144

APPENDIX G: SAMPLE BASIC INSTRUCTION LISTING ---------- 145

APPENDIX H: SAMPLE INPUT PARAMETER FORMAT LISTING 146

BIBLIOGRAPHY --- 48

INITIAL DISTRIBUTION LIST ------------------------------ 149

4

LIST OF FIGURES

1. PRO-LOG STL BUS PIN LEFINITIONS 12

2. HOST CONTROL PROGRAM ------------------------------ 18

3. RS-232C PIN rEFINITIONS ANr SYSTEM I/O SETUP 26

1. INTEL HEX FILE RECOR" FORMAT ----------------------- 33

5

I. INTRODUCTION

The Naval Postgraduate School Electrical Enzineering

Department's microcomputer/,i croprocessor development

laboratory, presently being used for microprocessor

application courses at thie beginning and intermediate

levels, offers two metnods of applications development. One

method uses the Tektronix LIM development system. While

this system is very capable for hardware applicaticns

development, it is limited in available software, provides

for use by only a single user at a time, and tales a

considerable amount of time to learn to use properly. Also,

because of the hich cost of additional in-circult emulation

modules for different processors, the system nas been slow

to expand. On the otter end of the spectrum, tne ALTOS

series single and multi-user microcomputer systems Drovile

extremely zool suppprt for software development aue to tne

vast variety of CP/M Dasei software currently available.

These systems nave a much lower per-user cost and provide a

wort environment more enhancine to individual

productiveness. Tne primary lisadvantage, however, is tne

lack of support for hardware development, without having to

ret inside tne computers and building some type of kludged

interface whose reliability is often haphazard at best.

6

The design and implementation of a relatively low cost,

low complexity, ngaly Vlexiole microprocessor development

system, combining many of tne good features of each of these

metnods is tne topic of furtner discussion in thls thesis.

7

F-

II. THE mICROPROCESSOR DEVELOPMENT SYSTEM

The bounding needs of thnis microprocessor aevelopment

system (MDS) are grouped into the four areas listed below:

Tfe overall system cost sftoula be relatively low in
contrast to laree develoDment systems such as t e
TeKtronix 3002.

The MDS should be of low complexity in both software
and nardware requirements.

The system should utilize existinR software and
hardware to the best extent possible.

The system stoul be expandable and easily
customized or reconflured to operate witt numerous
other microcomputer systems.

The determination of these needs made tne selection of

final requirements almost automatic. The primary decisions

were what capabilities should be included in tne MDS witrtin

the constraints of the needs given and tne time available.

Typical development system components Include software

support for editing, assembling and deburRinR applications

programs and r.ardware support for testine botn the software

and hardware in an in-circuit emulation (ICE) environ-ent.

Because of th.e low complexity constraint and the limited

time available for this project, it was decided that the ICE

component would be tne area where most of the compromises

would be made durinw the system desien. To further meet the

stated needs, the decision was made to design the system fnr

operation as a task In the CP/M and MP/M operatini systems

environment.

A. HARDWARE CONSIDERATIONS

Initial ideas for meeting the tardware needs of tne MDS

Included utilizinx an ALTOS microcomputer as the control

computer for a separate hardware development system. The

minimum nardware development system would consist of a

dedicated microprocessor, EPROMs for an onboard monitor,

sufficient random access memory (RAM) for storage ard

execution of fairly complex programs and a serial RS-232C

port for interface to tne ALTOS.

Tne ALTOS computer and tne nardware aevelopment system

together woull form the complete microprocessor development

system. For clarity, the ALTOS computer will nencefortn te

referred to as the 'HOST', tfe hardware develooment system

as the 'MDS' and tne overall system as the "AMDS', for ALTOS

Microprocessor Development System.

The MDS hardware was tfe subject of primary

consideration during the Initial stages of system design.

Consideration was first given to wire-wranpine cirruits to

meet tne stated minimum nardware requirements, but this

approach was soon recornized as beine prohibitive due to the

considerable time requirements Involved for tnis type of

wori.

9

This anDroacn would also contribute to a less reilatie and

81 less flerible system for long term use anti future expanslon.
Thus, the decision was made to use a standa.lizea bis

system wnicn qas achieved industry acceptance in both proven

applications and in manufacturer support and wnlcm would

offer a reasonable initial system cost (under $15.'.

While several manufacturers offer such a system, tte PRO-LOG

Corporation STD bus was cnosen over others primarily due to

its immediate availability and local manufacturer support.

The final m4DS hardware configuration consists of tne

following PRO-LOG components:

A 16 slot STD bus and card cage witn provisions for
wire-wrapped cards.

A 2M~z ZB processor card witn onboard provisions
for up to 4:K bytes of RAM and up to 8K bytes of 2716
EPROM.

Two 15K byte static memory cards.

A dual USART card consistint of two fully
independent, asynchronous RS-232C serial DOrts Witn
provision for one of these to be configured as a 20mA
loop for TTY applications.

Several blank utilit cards for wire-wraped
applications.

A DC power supply providing -5V/10A and *12Y/I.k.

The only, hardware modification necessary to get thls

system operable was tne addition of a manual reset switcn

wnicn is only a momentary ground to tne pusn-button reset

10j

pin (48) an :fl0h STD bus. Tfle STD tus pin definlitions are

eiven In Flizure 1 .

PIN MNEMONIC DESCRIPTION

1 +5VDC Logic Power
2 +5VDC Logic Power
3 GND Logic Ground
4 GND Logic Ground
5 VBB#1 Logic Bias 41 (-5V)
6 VBB#2 Logic Bias #2 (-5V)
7 D3 Data Bit 3
8 D7 Data Bit 7
9 D2 Data Bit 2

10 D6 Data Bit 6
11 Dl Data Bit 1
12 D5 Data Bit 5
13 DO Data Bit 0
14 D4 Data Bit 4
15 A7 Address Line 7
16 A15 Address Line 15
17 A6 Address Line 6
18 A14 Address Line 14
19 A5 Address Line 5
20 A13 Address Line 13
21 A4 Address Line 4
22 A12 Address Line 12
23 A3 Address Line 3

24 All Address Line 11
25 A2 Address Line 2
26 AIO Address Line 10
27 Al Address Line 1
28 A9 Address Line 9
29 AO Address Line 0
30 AS Address Line 8
31 WR* Write to Memory or I/0
32 RD* Read Memory or I/O
33 IORQ* I/O Address Select
34 MEMRO* Memory Address Select
35 IOEXP I/0 Expansion
36 MEMEX Memory Expansion
37 REFRESH* Refresh Timing
38 MCSYNC* CPU Machine Cycle Sync.

39 STATUS 1* CPU Status
40 STATUS 0* CPU Status

Figure 1 - PRO-LOG STD Bus Pin Definitions

12

PIN MNEMONIC DESCRIPTION

41 BUSAK* Bus Acknowledge
42 BUSRQ* Bus Request
43 INTAK* Interrupt Acknowledge
44 INTRQ* Interrupt Request
45 WAITRQ* Wait Request
46 NMIRQ* Nonmaskable Interrupt
47 SYSRESET* System Reset
48 PBRESET* Push-Button Reset
49 CLOCK* Clock from Processor
50 CNTRL* AUX Timing
51 PCO Priority Chain Out
52 PCI Priority Chain In
53 AUX GND AUX Ground
54 AUX GND AUX Ground
55 AUX +V AUX Positive (+l2VDC)
56 AUX -V AUX Negative (-12VDC)

*Low-level active indicator

Figure 1 (cont'd)

13

B. SOFTWARE CONSIDERATIONS

The editing, assembling and debugging software needs for

the AMDS were easily fullfilled by deciding to utilize CP/M

based software. The basic CP/M and MP/M operating systems

provide software for each of these needs, therefore

simplifying the overall system design considerably.

Additionally, the existence of a vast selection of CP/M

based software products on the commercial market greatly

enhances the growth prospects for software applications

development with this system. An added feature of the

decision to use CP/M based software is the ability to

develop and test software on any microcomputer using the

CP/M operating system. This feature alone is one of the most

advantageous aspects of the AMIS.

With these capabilities accounted for, the remaining

software considerations were those of determining the

software requirements for the HOST to control the MLS and

deciding upon those capabilities which should be included in

the control software package.

C. THE SYSTEM CONTROL SOFTWARE

The system control software needs were divided into two

areas: 1) the control program resident in the HOST, to be

used in exercising overall control of both the ALTOS and the

MDS and; 2) the MDS onboard monitor program, to be used for

communications with the HOST and for interpreting and

executing HOST commands.

14

1. The HOST Control Software

The primary functions of the AMDS control program

resident in the HOST are to communicate with the system user

and to exercise positive control of the MrS. It is intended

to be the workhorse of the system, providing numerous

routines to simplify the work required of the MES.

A study of the monitor and control programs for

typical development systems helped in identifying the

following software needs as the most essential user

requirements for implementation into the HOST control

program:

A routine to download data from disk to MLS memory.

A routine to upload data from MD3 memory and store
it on disk.

A routine for examining and modifying MDS merrory
contents.

A routine for filling specified blocks of MDS memory
with a specific byte of data for memory initialization.

A routine to locate a specific data sequence in MDS
memory.

A routine to dump the contents of MrS memory to a
CRT or printer in a format conducive to user
interpretation.

A routine to initiate the execution of a program
previously placed into Mrs memory.

Each of these routines are implemented in the HOST

control program. Additional routines provide: 1) the ability

to perform additions and subtractions of two hexadecimal

15

numbers and display the results, 2) a routine for continuous

modification of MES memory without an intermediate

examination of each location, and 3) routines for online

user self-help and system use instructions.

The primary ccnsideration in the desin of the HOST

control program was in making it user oriented. Thus,

considerable effort was made to make the system easy to

learn and to provide positive user feedback in all rodes of

operation. Examples of this include the implementation of a

menu displaying all user options, detailed instructions for

required input formats (available at any time), and fully

explanatory error displays. Operation of the system is

designed so that the user should never be in doubt as to

what is going or what is required of him.

The control program flow is straightforward. Program

parameters are first initialized followed by displaying the

menu of options on the user's console and prompting him for

input of the desired option. The input is then interpreted

and a branch is made to the routine chosen, whereupon the

user is again prompted for additional input unique to that

option. Upon completion of the option, at the command of the

user or after a trap to certain errors, the program returns

control to the menu routine to await further user commands.

This flow is easier visualized, as shown in Figure 2.

The flow of the individual option subroutines is

equally simple. Upon entering each routine, again various

16

parameters are initialized and the user is prompted for

initial input. When the proper input is received, the

routine takes the necessary actions to perform the task,

including communications with the MDS, if applicable, and

prompting the user for additional inputs as required. On

completion of the option, control returns to the menu

routine.

17

INITIALIZE I
PARAM ETERS

DISPLAY
MENU

GET USER'S 1
SELECTION

BRANCH TO
SELECTED
OPTION

OPTION

OPTION COMPLETED
or

ERROR
or

USER HALT

Figure 2 - HOST Control Program Flowchart

18

All user input is checked for validity including

proper syntax, correct number and placement of parameter

delimiters and for valid hexadecimal digits where

applicable. Additionally, the input is checked for user

requests for help or to terminate the option and return to

the menu. Data input and output formats were kept as

compatible as possible with those in the CP/M dynamic

debugging tool (MLT). All input is terminated with a

carriage return or a line feed and input line editing

functions conform to the rules set forth in the CP/M and

MP/M users manuals. By maintaining this degree of

compatibility the learning cycle of the AMES user should be

lessened considerably.

System errors are divided into two categories; those

due to faulty user inputs and those due to disk 1/0

operations. Depending on the particular error, errors may

take one of three courses of action. They may return

directly to the menu, they may restart the option in

progress when the error occurred or they may simply return

to the point where the error occurred and await user

provided corrective measures. More details are provided in

the AMDS user's guide.

The final area of the HOST control program requiring

discussion is that of the routines and associated protocols

used for intercommunication between the HOST and the mrs.

Because the MrS may not always utilize a fast processor such

2.9

as the Z80 and since the MrS is provided with the ability to

execute user programs in real time, it was conceivable that

the MLS response time to the HOST could be considerably 5iow

in some instances. This also brings up the possibility of

lost data if the HOST is transmitting faster than the MDS

can service its serial I/O port. A final problem in such an

asynchronous setup is what the data sent is intended for, be

it a command or some type of processable data.

In order to alleviate the lost data problem and to

lessen the response time to the HOST, several assumptions

were made in the communications software design. The primary

assumption is that the HOST has communications priority at

all times. From this assumption the following protocols were

established and implemented. A type of software handshaking

between HOST and MDS is provided for each character sent by

either device. Some experimentation was done with the use of

packets of characters greater than one, but some data loss

was experienced when either the HOST or MrS was busy with

other tasks besides I/O. Though time prohibited further

experimentation in this area, it is felt that some type of

hardware initiated control signals would be necessary to

increase transmission/reception reliability in a packet

communications mode for this system.

The protocol thus implemented follows several rules.

For each piece of data to be transmitted two bytes of data

are actually required. The first byte indicates the type of

20

data to follow. Types include command data, pure data, and

status data. Each type is assigned a hexadecimal equivalent

as follows:

055H indicates that the next byte to be transmitted
will be a command

OFFH indicates that the next byte to be transmitted
will be pure data

OOH indicates that the next byte to be transmitted
will be status data (the only currently implemented
status data is 00H, meaning the sender is at some point
in the execution of its program where it awaiting input
from the other device in order to proceed)

As an example, when the user wants to examine an mrS memory

location the HOST first sends the data sequence:

055H , 058H (058H is the ASCII hexadecimal code for
'X', the Examine Command)

After receipt and display of the data in MES memory, the

user wants to change it to say, 03FH, thus the HOST would

send the sequence: OFFH , 03FH

In addition to this rule, recall that a software

handshake is provided for every character sent. As each

character is received, the receiving system returns an

acknowledgement byte of 011H, the ASCII hexadecimal code for

XON, meaning the character has been received and further

transmissions may proceed. At the same time, the sender is

awaiting this acknowledgement before proceeding with further

transmissions or continuing on to other tasks. This

handshaking overhead seems unrealistically high at first

glance, but it is negligible to the user for most types of

21

applications envisioned for this system and it provides a

high degree of confidence in the communications setup.

Perhaps the only time the communications throughput would be

degraded, in the user's eyes, would be when an application

program might require nearly continuous data transmissions

for a lengthy period of time. A way around this particular

situation is discussed in the section on system

implementation.

To improve MES response to HOST transmissions, the

MLS checks for receipt of a HOST transmission prior to every

output to the HOST. If the HOST has sent information,

typically a new command, the MES halts whatever it was doing

and processes the new data.

Further details concerning the HOST control program

are discussed in the system user's guide and all routines

are well documented in the source code listings and flow

diagrams in the appendices.

2. The MDS Onboard Monitor

Because the HOST control program was designed to do

most of the the work required of the AMDS, the MDS monitor

software was much easier to develop.

The monitor software essentially consists of a

command/data interpreter, a set of complementary routines

for each of the HOST initiated MtS options, and a similar

set of I/O routines for communications with the HOST. The

22

program flow is basically the same as described for the HOST

control program, with the exception that there is no direct

input from the user. The MLS monitor does not have any error

routines since all system error detection is built into the

HOST control program. If for any reason the monitor does not

understand the HOST transmissions it simply waits until

something is sent that it does recognize and then proceeds.

Though it is unlikely that the system will get hung up in a

loop during normal HOST to MDS communications, if it should

occur, either an ESCape sequence from the HOST or a manual

reset of the MDS will terminate the loop. The only

foreseeable circumstances in which this might occur are when

a user program, executing in MLS memory, attempts to obtain

information from the HOST when the HOST is not expectia6

such a request.

The monitor is written for automatic startup after

either a system power-on reset or a manual reset. All YtS

serial I/O ports are initialized to communicate at 060e

baud. Routines for user program I/O with the HOST console

and for return to the MDS monitor are also provided via

simple user calls, as explained in the user's guide.

Again, more detailed information may be best gleened

from the AMDS user's guide, the flow diagrams and

accompanying source code listings in the appendices.

23

III. SYSTEM IMPLEMENTATION AND CUSTOMIZATION
9

*The AMES is a modular system with respect to both

software and hardware. Though this thesis is concerned

primarily with implementation of the system as already

stated, with an ALTOS microcomputer and the PRO-LOG STE

hardware, the design is intended to be usable on any other

CP/M or MP/M based system with only a few software changes

and minor additional hardware interface requirements (beyond

the MDS hardware needs, naturally).

A. PUTTING IT ALL TOGETHER

Implementation of the HCST control program is simply a

matter of loading and executing the program via the normal

CP/M method of typing in the name of the object file, in

this case 'AMDS, followed by a carriage return or line

feed.

Implementing the MES system, while not especially

taxing, does require the use of a PROM programmer to load

the monitor software into EPROM. Once this is acccmplished,

and the EPROMs are installed, the system implementation i5

nearly complete. All that remains is connecting the systems

together, turning on the power and the reset is autom;atic.

This particular development system is coupled together

via a standard RS-232C connector cable set with a 25-pin,

24

DB-25P, male 'D' connector on the HOST end and a 26-pin

female Amphenol connector on the MDS end. Only the signal

ground, transmit and receive signals are necessary and other

RS-232C signals are ignored in this Implementation. (The

standard RS-232C pin definitions are shown in Figure 3.) The

HOST end of the connector is plugged into the autiliary

serial port on the ALTOS multi-user system and the MrS end

is connected to the 'A' channel socket on the dual USART

card. Additionally, It should be ensured that the "A"

channel is jumpered for ZTE (Eata Terminal Equipment)

operation, as explained in the dual USART card documentation

listed in the bibliography.

These procedures are all that is necessary to imle:nent

and use the basic system.

25

ALTOS MDS

PGND 1 PC 1 Protective Ground

RXD _ _ 2 Transmitted Data (TXD)

TXD 3 3 Received Data (RXD)

RTS 4 4 Request to send

CTS 5 Clear to send

DSR 6 6 Data Set Ready

SGND 7 7 Signal Ground
8Received Line

Signal Detect
DTR 20 20 Data Terminal Ready

NC - No Connection

Figure 3 - RS-232C Pin Definitions and
System I/O Setup

26

B. CUSTOMIZATION

The primary areas of customization of the AMDS are those

concerning the use of different processors in the 'ES and

the use of different serial interfaces.

At present the PRO-LOG Corporation STr bus supports the

9080, 8085, Z80, Z80A and the 6800 series microprocesscrs.

The current implementation uses the ZSO with onboard 3PROM

and RAV. The ROM and RAM address areas may be jumpered to

either the lower (as done here) or the upper 16K of address

space. In order to use the monitor in the upper 16K of

address space would require a hardware addition capable of

taking control of the address lines, at power-on reset or

manual reset, and forcing the next execution address to

coincide with the first address of the monitor. Otherwise,

the Z80 (and 8080/8085) processors normally execute location

0000H after a reset sequence. If no monitor program is

located at this location the processor executes garbage

until a HALT instruction is encountered. An implementation

of the monitor in high memory, however, is an idea to be

well considered for future versions of the &MS, as it wouli

provide better compatibility with the page zero I/C mapping

scheme used by the 6800 microprocessor. As an additional

benefit, it would lessen some of the software l1mitations

currently imposed by the current configuration. These

limitations are discussed in a separate section of this

paper.

27

• -• ,

- -- j H? y

As to the use of different serial I/O interfaces,

several hardware additions may be necessary on the ALTOS

computers. If the system is used with the single-user ALTOS

computers, the options are to use the serial port currently

used by the printer or to build an additional serial port

into the computer via the use of its internal bus connector.

If using the multi-user system, two AMLS systems could be

supported simultaneously by simply using two of the serial

ports currently used for consoles. To support four complete

AMDS systems would require the addition of three more serial

ports in a manner similar to that discussed for the single

user system.

The changes in serial port usage would require a few

minor changes in the HOST control program. If ZILOG SfO

devices are used, as presently installed in the ALTOS series

computers, the software modification reduces to simply

changing the status (MSTATPT) and data (MrATAPT) port

designations in the 'equates' (EQU statements) section at

the beginning of the HOST control software source code and

then reassembling the code for the new serial ports. If

serial communication chips other than the SIO are used, the

HOST control routines MD3TAT, MrSIN, and MESOUT would have

to be modified to operate with the particular cbip chosen.

On the MDS side of the system, the customization process

for software changes of serial ports is very similar to that

of the HOST. Using additional INTEL 8251 USARTs would

28

, T- -. . , .- - --.-...

necessitate only changes to serial port equates for CHASTkT

and CHADATA in the MDS monitor source code, followed by

reassembly and reprogramming of the EPROts. Use of serial

devices other than the 8251, would require appropriate

changes to the MES routines HOSTAT, HOSTIN. and HOSTOUT.

Beyond these hardware oriented customization procedures,

provisions have been included for the addition of more user

options and error processes in the HOST control software.

Each of these areas use 'Jump' tables to vector to the

option or error routine selected. To add an option to the

menu, the new option routines would be added to the body of

the current source code, a JMP xxxx (xxxx is the option

label) instruction would be added to the menu jump table and

the menu display would be modified appropriately in the

message storage section of the source code. The insertion of

additional error codes is identical, except that the jump

instructions are inserted in the error jump table.

One further comment on the addition of user options

concerns the method of decoding the option selected. 1enu

options are identified by an assigned alphabetic character

from A through Z (current options go only through the letter

N). The ASCII code for each option is modified for use with

the jump table in the following manner. The ASCII code is

first 'anded' with the data 01Fd. This removes all ASCII

biasing and leaves only the hexadecimal equivalents of the

numbers 1 through 26, corresponding to the letters k to Z.

29

These numbers are then used to find the appropriate vector

from the jump table, as further explained in the source

documentation. Thus the provision for twelve more options, 0

through Z, is included in the current version of the HOST

control software. If these options are added, simple cbanges

are also required to the equates for MAXCHCE, the highest

option letter in use, and for NHSTCMr, the current number of

'host only' commands.

A consideration to keep in mind when editing the HDST

software is the fact that it is currently a 62K byte file

and thus larger than the index table capacity of the TEE

text editor used widely at the Naval Postgraduate School.

For this reason, the source code is broken into two files:

AMLSP1.ASM containing the primary option routines, and

AMLSP2.ASM containing the utility and support routines and

message and data storage definition areas. Prior to

assembly, the files are concatenated via the use of the ^.P/v

Peripheral Interchange Program (PIP) as follows:

PIP AMDS.ASM=AMDSPI.ASM,AMDSP2.ASM

The file AMrS.ASM is then assembled using whatever assembler

is desired.

MrS monitor software customization is at least as

simple, if not easier than that for the HOST. Commands are

decoded via the simple mechanism of comparing the corrmani to

a set of known commands and then jumping to the option

30

routines selected. The only additional source code changes

which might be applicable to the MrS would be a change of

the assembly origin (ORG statements) addresses if the

monitor is to be moved into upper memory as mentioned

previously.

C. SYSTEM LIMITATIONS

This system, as with many other well designed systems,

also has its limitations. Some of these have already been

alluded to in previous sections and will now be discussed in

more depth.

The current MDS configuration, with the lower 16K

address space reserved for the monitor ROM and RAM, imposes

several notable limitations on the use of the AMDS. Besides

the page zero I/O mapping incompatibility between the e80

and Z80, which has already been pointed out, the inability

to use this address space for user program execution places

a restriction on the types of CP/M based software which may

be downloaded and executed in the MIS memory.

CP/M's executable object files, designated as .COm "

files, are created with the implied intent of loading and

initiating the execution of these files from, location 0100H.

Since this location is within the reserved area in the Mr S,

such '.COM' files cannot be downloaded and executed in MLS

memory. Unfortunately, most CP/M software on the commercial

market is distributed in this format.

31

The restriction thus Imposed is that only disk files in

the INTEL Rex Format (see Figure 4) or in a page relocatable

format may be downloaded and executed in MDS memory. This is

because these formats are not dependent upon any address

restrictions and are executable in whatever address space

for which they are assembled.

32

RH RL LA RT DATA CK

RH - RECORD HEADER: AN ASCII COLON (3A HEX)
SIGNALS THE START OF EACH RECORD.

RL - RECORD LENGTH: TWO ASCII HEX CHARACTERS GIVE
THE RECORD LENGTH (THE NUMBER OF 8-BIT DATA
BYTES IN THE RECORD). END OF FILE IS INDICATED
BY A ZERO RECORD LENGTH. (10 HEX IS MAX. RL)

LA - LOAD ADDRESS: FOUR ASCII HEX CHARACTERS GIVE
THE ADDRESS WHERE THE FIRST DATA BYTE OF THE
RECORD IS LOCATED.

RT - RECORD TYPE: THE RECORD TYPE IS ALWAYS 00
EXCEPT FOR THE LAST RECORD OF AUTOSTART FILES,
WHERE IT IS 01.

DATA - TWO ASCII HEX CHARACTERS REPRESENT EACH

8-BIT DATA BYTE.

CK - CHECKSUM: TWO ASCII HEX CHARACTERS GIVE THE
NEGATIVE SUM OF ALL PREVIOUS BYTES IN THE
RECORD, EXCEPT FOR THE COLON. THE SUM OF ALL
THESE BYTES PLUS THE CHECKSUM EQUALS ZERO.

Figure 4 - INTEL HEX File Record Format

33

! 4

The free address space of the present MrS, 4000H to

OBFFFH, is therefore sufficient for the needs of these file

types. As mentioned, most distributed software does not come

in these formats. For use of the MrS in beginner and

intermediate level course work, however, thls restriction

should not be a dominant disadvantage in applications

development and in gaining an insight into the use of

microprocessors.

Because of the time constraints imposed, as well as this

student's lack of familiarity with page relocatable file

formats, only the use of type '.EEX" files are supported for

upload and download operations in the current version of the

AtIDS.

Other limitations of the system are: the lack of

breakpoint setting and cpu register examination facilities

in the MES; the lack of a facility for moving blocks of MDS

memory; the inability to operate the t-,S in a true

in-circuit emulation mode; the current limitation of having

only a single processor and the inability to operate

multiple processors on the MDS bus; and the limitations

already discussed concerning communications protocols.

Most of these limitations are only temporary, with the

possible exception of obtaining true in-circuit emulation.

The high communications overhead of the HOST to MrS

interface can be avoided by user programs in the MDS mem,;ry

34

simply by utilizing a separate console and the additional

MDS serial port when the need for high speed data transfer

arises.

35

I

IV. CONCLUSIONS AND RECOMMENDATIONS

The original needs stated for the microprocessor

development system have been met, with the exceptions noted

as limiting factors. Even with these limitations imposed on

the current design, however, it is felt that a significant

tool has been added to the small, but growing Electrical

Engineering microcomputer laboratory. The final design of

the system has left considerable room for future expansion

and improvement in both areas of software and hardware ani

is thus a good vehicle for additional thesis study.

A. FUTURE HARDWARE

There are numerous changes and enhancements to be made

to the system in the hardware area. Some of these

enhancements are described below.

Implementation of hardware initiated communication
control signals to increase system response and
throughput.

The addition of a tPaster/Slave cpu capability to
operate and evaluate different microprocessor types on
the same bus; this capability would have to be
implemented via the use of interrupts and the bus
request control lines plus appropriate software.

The addition of analog to digital and digital to
analog (A/D and D/A) capability will significantly
increase the usefullness of the system in hardware
development applications.

36

Another worthwhile improvement would be the addition
of a PROM programmer with the capability to change its
personality under software control in order to program
different types of PROMs.

and the list goes on.

B. FUTURE SOFTWARE

Many of the immediate enhancements to the system will

probably be an outgrowth of the limitations pointed out

previously. These include making changes for the use of CP!M

".COM' files and adding support for page relocatable files.

These two additions alone, would tremendously improve the

potential uses of the AMDS.

Other near future additions should include facilities

for moving blocks of MDS memory and for the use of

breakpoint, single-stepping and program trace routines. Such

routines would probably be best implemented as individual

files downloaded to the MDS memory. The routines coull then

operate as an extension of the onboard monitor. This would

also provide the flexibility to execute routines for

different processors under control of a dedicated monitor.

The addition of software for cross assembly of source

code between various processors is another recommendation

worth careful consideration. One idea, which was considered

for inclusion in this thesis but was axed for lack of time,

is the use of macro assemblers for cross 'translation' of

source code. The idea would be to develop source code using

37

V

the standard mnemonics of a particular processor and then

translate the source code to the mnemonics understood by

wtatever processor is actually available. Once this is

accomplished, testing and debugging of the software can be

done with available hardware. The code can then be

translated or cross assembled back to code for the original

processor and put to use in its intended application, all

without the use of a true development system for that

processor.

Finally, an area of great promise is that of systems

networking. The new CPNET and MPNET loose-coupled network

facilities, by DIGITAL RESEARCH Corporation, provide

numerous avenues for further study into allowing the ArCS to

share its resources with other computer systems.

All of these improvements are feasible and cost

effective. These additions will also allow much of the

burden to be taken off the beginninb program and hardware

designers. Much of the less interesting trivia normally

associated with applications development can be skipped over

and the solution to the problem can be approached in a more

efficient and structured manner.

38

APPENDIX A

AMES USERS GUItE

TABLE OF CONTENTS

1. INTROLUCTION -------------------- 40

2. HOW TO USE THE AMDS -------------------------------- 41

3. GETTING STARTED ------------------------------------ 43

4. SYSTEM FUNCTIONS (USER OPTIONS)------------------ 44

5. INFORMATION OF GENERAL INTEREST -------------------- 52

6. TIPS FOR PROGRAMMING THE MrS ----------------------- 54

7. SYSTEM ERROR MESSAGES ------------------------------ 57

39

AMBS USERS GUILE

1. INTRODUCTION

The ALTOS Microprocessor revelopment System (AMES) is

designed to be used as an aid to students In beginning and

intermediate levels of software and hardware applications

development. The system consists of an ALTOS microcomputer,

running under the CP/M or MP/M operating systems, and a

hardware development and testing system built around the

PRO-LOG STD bus. Included in the current (June 1961)

hardware development system are a 2MHz Z80 cpu card with

onboard monitor in EPROM and 4K bytes of static RAM, two 16K

byte static RAM cards and a dual TIjART asynchronous RS-232C

serial I/O card. The ALTOS and the hardware development

system are linked together via a serial I/O channel.

The ALTOS computer, hence referred to as the 'HOST',

exercises control over the hardware development system

(designated as the 'MrS') via the execution of the HOST

control program named AMIS.COM . The onboard monitor in the

MrS contains routines which complement those in the HOST

control program, though on a less complex scale. A more

detailed treatment of the inner workings of the AMD3 system

is available in the student thesis by LT. Stephen M. Hughes,

USN, titled "A Microprocessor Development System for the

ALTOS Series Microcomputers".

40

2. HOW TO USE THE AMDS

The AMES' primary use is in the design and testing of

both software and hardware applications in a real time

environment. The typical steps for effective use of the

system would be as follows:

a) Using standard CP/M or MP/M software development

tools, such MT, T'Et, Er, LSM and MkC, the user would

develop, test and debug (to the extent possible)

software to be used in a hardware/microprocessor

oriented application.

b) Simultaneously to step a), the user, or other

members of a project team, would be designing, wire

wrapping and performing initial tests on the hardware,

using available test equipment such as oscilloscopes,

digital voltmeters, etc.

c) At such time as the hardware and software are

ready to be tested together, the AMDS would come into

use. At this point the wire wrapped circuitry would be

inserted into a slot in the development bus, the

software would be downloaded to the MLS memory and, via

the use of the AMrS user options, the software and

hardware would be tested as a single unit.

41

d) Refinements and correction to both hardware and

software could then be made as In steps a) and b) and

step c) then repeated until the application operates as

intended.

The intent of this procedure, though it might appear

cumbersome, is to allow the software programmers to

concentrate on their work using proven and tested

development aids while simultaneously allowing the hardware

designer/builders to forge ahead in their respective areas.

The lesson to be learned is the 'real world' concept that

communications between such distinct but collectively

important segments of a team effort are what is necessary

for successful fullfillment of the project goals. These

intergroup communications require that each team carefully

plan the project in its initial stages of development and

that the division of responsibilities and the methods of

implementation of the project are thoroughly understood by

all members of the team. With this type of planning and

communication of ideas, the Amrs concept is thus seen as

less cumbersome than initially thought and actually allows

for a very flexible working environment. The use of the A&ES

also relieves the hardware designers of much of the burden

previously placed on students to design and wire wrap their

own cpu and memory cards.

42

3. GETTING STARTEL

This section is intended as a quick review for those

already familiar with the use of the AMrS. Others should

carefully review the remainder of this guide prior to

attempting to use the system.

With software developed and tested as best possible

(naturally those software routines fully dependent upon the

hardware have not been completely tested) and with the

hardware prototype in hand, the stage is set for utilization

of the AMDS.

With the MLS power OFF (!) the prototype card is

inserted snugli into one of the wide slots of the card cage

which are specially designed to accept wire wrapped cards.

After insuring the card is properly in place, the power is

then switched on and the MrS reset switch is pressed. The

MLS is now ready for use.

Next, the AMDS HOST control software is initiated from

the ALTOS system console by typing 'AMLS', followed by a

carriage return. The HOST control program then loads into

memory and begins execution by displaying a menu of user

options and prompts the user for a reply. At this point the

user(s) may proceed with testing using the options described

in subsequent sections of this guide.

43

4. SYSTEM FUNCTIONS (USER OPTIONS)

The AMDS control program is designed as a menu-driven

program. This means that after each primary task is

completed, the user is shown a menu of options from which he

may chose his next move. Each of these options is discussed

in the remainder of this section of the guide.

A. SUPPRESS PRINTING MENU -

Selection of option 'A' allows the experienced AMES user

to automatically suppress the display of the menu at the

end of each option. When this is done the system status

(whether the HOST or MrS is in control) and reminders of

which option suppresses and which does not suppress the

menu are printed, followed by the prompt to input a menu

option.

B. LO NOT SUPPRESS PRINTING MENU -

Opposite of option 'A', option 'B' allows the user to

regain full menu display if he cannot remember the

option code he wishes to select.

C. BASIC INSTRUCTIONS -

Option "C' displays a set of basic instructions for use

of the AMES. These instructions should normally answer

the questions of most first time users without the need

to resort to this guide.

44

a

D. HEXADECIMAL ADD and SUBTRACT -

Option 'r' allows the user to quickly obtain the 16 bit

hexadecimal sum and difference of two numbers. When this

option is selected, a nessage verifying the option

actually entered will be displayed, followed by a prompt

for input.

The input expected is two hexadecimal numbers, of up to

four digits each, separated by either a comma or a space

as the following example shows:

>)0AF F3AB or >01AF,F3AB

The sum and difference of these two numbers are then

displayed as:

SUM = F55A LIFF = OE04

The user is then returned to the menu for selection of

another option.

(** This option has the same input format as the "H'

command in rDT **

E. RETURN SYSTEM CONTROL TO HOST -

Selection of option 'E' is necessary only when the

system control has been passed to the MLS via a previous

command for it to execute a program in its own memory.

This option then allows the user to request the MDS to

45

terminate its present action and return control to the

HOST in preparation for subsequent commands.

** Note that this option may not be effective if the

program being executed in MLS memory runs astray or

never checks for or attempts to perform 1/O with the

HOST. The only renedy in this situation is to manually

reset the MDS.

F. RETURN TO CP/M -

Selection of option 'F" will terminate use of the AMDS

and return the user to the CP/M (or MP/M) operating

environment. (The input of a control C as the first

entry after any prompt will also accomplish the same

thing.)

G. LOWNLOAD HEX FILE - ISK TO MLS -

Option 'G' allows the user to download an INTEL Hex

format file from disk to MrS memory. Hex files are

normally generated in the course of the assembly

process.

** Note that only 'HEX' file types are supported in this

version and the system will not accept requests for any

other types.

When this option is selected, an option verification

message is displayed and the user is prompted to input

the filename. The entry of the filetype 'HEX' is

46

optional but acceptable. Rules for acceptable filenames

follow those set forth I- CP/M documentation with the

exception that ambiguous filenames (those containing

?'s) are not accepted. Additionally, only the currently

logged in disk drive will be used for disk I/O and if

the drive select code is entered with the filerame it

will be ignored if it fails to match that which is

currently logged in.

After the 'ex file is successfully downloaded, a message

to that effect will be displayed and the user will be

returned to the menu.

H. UPLOAr MrS MEMORY TO HEX rISE FILE -

Option 'H' is just the reverse of option 'G'. Filename

input is the same. After the filename is input, the user

is prompted for the starting and ending addresses in MrS

memory from which the contents are to be saved on disk

in a 'HEX' type file. Acceptable inputs are two

hexadecimal numbers, the first being less than the

second, input in the same manner as in option rL':

>403C 659F

When the upload is completed, the user will be so

informed and returned to the menu.

47

I. EXAMINe/SET MrS MEMORY LOCATION(S) -

Option 'I' allows the user to examine and modify (set)

the contents of MDS memory. The first prompt is for the

initial MrS address to be examined such as:)gBC3 . The

systeT then fetches the data from that location and

displays it as:

OECZ3 3k

and waits for more input after the '3A'. If the user

desires to change the data in that memorl location, he

may then enter the new data. The system stores the new

data and automatically advances, examines and displays

the next sequential location in MDS memory. This process

continues until a periol is the only data input.

If no modification of a memory location is lesired, a

carriage return will cause an al--<nce to the next memory

location without modifiing the vrS memory.

(** This option has the sat e 1/0 format as the '3'

command in ET **)

J. CONTINUOUS SET OF MDS MMORY -

Option 'J' is similar to the examine/set option ('r')

except that it does not exa.miie the MDS memory, it only

modifies it with sequential inrut data. The first input

requested is the starting MrS address for modifications,

i.e. >i3DA . The second and subsequent prompts are for

48

data to be entered into MES memory, sequentially

starting at the address specified. Input data may be up

to 255 characters long (including spaces and commas) for

a single line of input. If more than 255 characters are

input, the system merely issues another prompt for a

continuation line. Each byte of data is separated by a

space or a comma. Waen input is completed, a period

entered after the promp; will terminate the option.

K. FILL MES MEMORY WItH SPECIFIEt BYTE -

Option 'K" enables the user to fill any portion of MDS

memory with a specifLee byte of data. The advantage of'

this is to allow the tser better knowledge of the

current contents of MBS memory and to help in

identifying needed dati during memory dumps to the CRT.

The input expected af;ei the prompt are the start and

ending MrS addresses followed by the data to be placed

in those locations. For example:

>0395,7Fr0,2A will fill MrS memory between,

ani Including, locations Z*95m

an, 7FLOH with data 2A, the

A;CII code for ' *

(** This option has the same input format as the 'F'

command in LrT **)

49

L. LOCATE BYTE SEQUENCE IN MrS MEMORY -

Option 'L' allows the user to search MES memory fcr a

sequential data seruence up to 16 bytes long. The first

input prompted fcr is the search start address followed

by an optional enO address as shown:

>0023 5?9A or >(023

If no end address is given it will default to OFFFFE.

The next prompt Ls for the byte sequence as:

>00 03 45,9A,CC up to 16 bytes

If the sequence is found, the starting address of the

sequence in MLS memory is displayed. If not found, an

appropriate message is also displayed.

M. DUMP MLS MEMORY LOCATION(S) TO CONSOLE -

Option 'M' provides for a hexadecimal and ASCII Mrs

memory dump to the CRT. The only inputs required are the

start and optional end addresses for the dump in the

same format as option 'L'. If no end address Is

specified it defaults to the start address + 256.

(** The dump I/O format is the same as that for the 'D'

command in rrT **)

If the user wishes to continue the dump after the

initial dump completes, he may type in the letter 'r' to

5e

dump the next 256 byte block. Any other input will

return the user to the menu.

** Note that unlike the LrT dump command, the only way

to abort a memory dump is by pressing the ESCape key.

N. EXECUTE MLS MEMORY FROM A SPECIFIEr LOCATION -

Option 'N' allows the user to pass system control to the

MES and let it execute a program in its memory. User

input required is the MES start address of the program

to be executed. After the address is input, the user is

asked whether or not the program to be executed in mrs

memory will be sending data to the HOST console for

display. If the answer is no, then the user is returned

to the menu. IF the answer is yes, then the HOST system

loops waiting for data to display, until one of the

conditions mentioned below is met.

* Note that when this option is selected, the options F

through N are disabled until the VLS returns control to

the HOST; when the 'E' option is selected; or when the

MrS system is manually reset.

** For further discussion on the proper use of this

option, see the section on 'TIPS FOR MrS PROGRAMMING'.

51

5. INFORMATION OF GENERAL INTEREST

a) The prompt for all user input is '>'

b) All inputs may be in either upper or lower case

alphabetics.

c) All input is terminated with either a carriage

return or a line feed.

d) All address and data inputs are expected to be in

hexadecimal notation. Address inputs contain froi 1 to 4

hex digits and data inputs contain 1 or 2 hex digits.

e) When inputting addresses and data, mistakes may

be corrected in two ways: 1) by using the RUHOUT key or

backspace keys to delete input or 2) by simply

continuing to input the hex characters until the correct

ones are input. For addresses, the program always takes

the last four or less hex digits input and for data, the

last two or less digits entered. At least one digit must

be entered for every required input parameter.

f) A question mark '?' entered during input will

cause the required input formats for each option to be

displayed. When the display is cor-pleted, the currently

selected option is restarted.

52

g) If the ESCape key is entered as input, the option

is immediately terminated and the user is returned to

the menu.

h) The MES is automatically reset at power-on but it

is generally a good idea to manually reset it anyway.

i) The MDS to HOST serial I/O port and the

additional I/O port in the ,-IS are both initialized at

every reset to operate at a 9600 baud rate.

53

6. TIPS FOR PROGRAMMING THE MDS

a) If a program requires considerable communications

with the user, the best terminal response will be gained

by using a separate CRT attached to the spare serial I/C

port in the MIS. This port may be reprogrammed for a

different baud rate if necessary (see the PRO-LOG dual

UART documentation for detailed steps for programming

channel B).

b) If the user does not wish to fool with

programming the MDS channel B USART, but still has the

need for console I/O, his program may use the routines

built into the monitor specifically for this purpose. In

a manner similar to the BEOS calls used by CP/M, the

user program may call location 0005H in the monitor for

console I/O using the HOST console. The conventions for

these calls is as follows:

- for input from the HOST console the user program

should call MLS address 0005H with the function code l1H

in register C; the character from the console will be

returned in the Accumulator

- for output to the console, a call is made to 'LS

address 0005H with the function code 02H in register C,

and the character for output in the Accumulator

54

- to merely check to see if input has been received

from the HOST, address 0005H is called with function

code 03H in register C ; if no character is waiting the

accumulator will be returned = 0H, otherwise A = OFFH

meaning input has been received

- if a call is made to MDS address 0005H with a

function code in register C other then 01H, 02H or 03H,

no I/O will take place and the C register will be

returned with OFF

** Two points should be remembered when using the

HOST console for I/O:

1) the data returned from the I/O port is a full

eight bits as received with no stripping of the high

order bit for ASCII data

2) when the console is to be used for user program

I/O, be sure to answer yes to the query about console

I/O when option 'N' is selected

c) if no I/O with the host console is necessary, as

in a) above, the user program should at least

periodically check the HOST port status to see if it

wants to terminate the execution of the user program. If

data is waiting a call should be made as explained above

to fetch the data so that the monitor can interpret it

55

d) the user always returns control to the HOST via a

jump to location 0038B in MDS memory; a RST 7

instruction will also accomplish the same thing

e) do not forget that MDS user memory starts at

location 4000H and all HEX files should be assembled for

addresses above that location

56

7. SYSTEM ERROR MESSAGES

System error messages are the result of either user

data input errors or disk I/0 errors. A list with brief

explanations follows:

A. USER INPUT ERRORS -

INVALIE MENU SELECTION - this message is displayed

when an option is input which is not one of the

selections from the menu. (* this error returns the user

to the menu *)

TOO MANY OR TOO FEW rELIMITERS IN INPUT - used to

indicate that too many or too few parameters were Input

than expected. Acceptable delimiters are a space or a

comma. (* this error restarts the current option *)

PERIOD ONLY PLEASE ! -given when a period is input

to terminate input and the period is preceded or

followed by other input data. Only a period may be

input. (* this error restarts the current option *)

INVALIr HEX IGIT - an input of a non-Hex digit (not

in the range 0-9, A-F) was attempted. (* this error

restarts the current option *)

57

CAN'T HAVE A DELIMITER AT START OR END OF INPUT -

either a space or a comma was input as the first or last

character in an input line. (* this errorestarts the

current option *)

TWO OR MORE LELIMITERS SEQUENTIALLY - too many

delimiters were inserted between input parameters. ('

this error restarts the current option *)

AMBIGUOUS FILENAMES NOT ALLOWED - the filename which

was input contained a '?' . (* this error reprompts for

new input *)

COLON (:) NOT PROPERLY PLACED IN FILENAME - the only

colon allowed in the filename is after the drive code

and before the first letter of the filename. (* this

error reprompts for new input *)

FILENAME TOO LONG OR TOO SHORT - maximum filename

length is 8 characters; minimum is I. (* this error

reprompts for new input *)

HEX FILETYPES ONLY ! - only files of type '.HEX' are

implemented in this version. (* this error reprompts for

new input *)

5-j

NO SPACES ALLOWED IN FILENAME - filename characters

must be sequential with no spaces. (* this error

reprompts for new input *)

NON-PRINTABLE CHARACTERS NOT ALLOWED IN FILENAME -

only printable characters are allowed in filename. (*

this error reprompts for new input *)

START ADDRESS CANNOT BE GREATER THAN FINISH ADRMESS

- when in the UPLOAD option, the user must specify lDS

memory address boundaries for upload with the start

address lower than the end address. (' this error

restarts the upload option *)

WARNING - ONLY CURRENTLY SELECTED DISK 4ILL EE USE,

INPUT IGNORED ! - this version of AMDS does not allow

disk drive specification unless it is the same as the

disk currently logged in to the user. Other drive

specifications are ignored and the option defaults to

the currently logged disk.

B. I3K I/0 ERRORS -

FILE NOT FOUNt - the file specified cannot be found

in the directory for download to the MDS. (* this error

restarts the download option *)

59

HEX CHECKSUM ERROR - a data error was detected while

trying to download a HEX file. (* this error returns the

user to the menu *)

DISK READ ERROR - an attempt was made to read a disk

file but was unsuccessful; check diskette media then the

disk drive. (* this error returns the user to the menu

OUT OF DIRECTORY SPACE - disk directory is full;

delete files or use another diskette. (* this error

returns the user to the menu *)

OUT OF DIRECTORY OR DISK STCRAGE SPACE - ran out of

space in one of these areas while attempting to write

data to a disk; *** when this occurs, the data already

written is deleted, i.e. NO PARTIAL files are saved .

(* this error returns the user to the menu *)

60

I

APPENDIX B

FLOWCHARTS FOR HOST AND MDS USER OPTIONS

O0PTIONA O0PTION B

SET MENU RESET MENU
SUPPRESSION SUPPRESSI(4

FLAG FLAG

MENU
MEN

MENU SUPPRESSION NO MENU SUPPRESSION

CGET 2 NOIs

CVT TO BIDI

PRINT
INST'S DO ADD &

SUBTRACT

CVT TO HEX
DISPLAY

BASIC INSTRUCTIONS HEX ADD/SUBTRACT

61

OPIN E OPTION F

REQUEST
CONTROL PRINT
FROM MDS S IGNOFF

< REQ.
CP/m(lP/ M4)

YES NO

RETURN CONTROL TO HOST RETURN TO CP/M

62

DOWNLOAD HEX FILE TO MDS ME14ORY

OPTIOD MD

GET
FILENA14E HEX RECORD

OPED FILE SN L

(HOS FLOW)4D

FILE Y S FLOW

FND? < 6F

-~ _ _ _ _ - -AMNON"J

UPLOAD FROM 'L'IDS MEMORY TO HEX DISK FILE

GET START

OPTION H END ADORS.

GET CMD & ADDR1
FILENAME TO 14DS

GET DATA
]DELTE ES ILEFROM £4DS

DISK

END NO
L

~XFER?
1

(HOST FLOW)
YE S

C~pOSE
FILE

MENU
GET START! l
END ADDRS.1

SEND DATA
TO HOST

NO DONE? DN

YES

(MD5 FLOW)

64~

EXAM4INE/SET MDS MEMORY

OPTION

GET STA.RTi
ADDRESS YES

SEND CMD &
ADDR

> MDS
SEND DATA

FROM MDS

DISPLAY TELL '-DS
DATA DONE

(HOST FLOW)1 EX

:1 AMDGET NEXT

GET START
MDS DATA

ADDRESS

SEND DATA
TO HOST

~NO

ONITOR (NDS FLOW)

65

CONTINUOUS :.IDS ME ORY SET

OPO J

GET START GET START
ADDRESS ADDRESS

SEND MD &GET DATAFROM HO
START ADDR STORE IT

GET DATA DONE? NO
FOR MDS

IS YESS

IT MONITOR

SEND DATA
TO '.IDS

TELL MDS
DONE

(HOST FLOW) (MDS FLOW)

66

FILL MDS MEMORY WITH SPECIFIED BYTE

OPTION KFILL

GET STAR& GET ADDR' S
ND ADDR'S & DATA
& DATA

END CMD FILL
DDR' s/DAT MEMORY

4DS NODN? O
DONE? NODN? O

YES E

MENU TELL HOST
L DONE I

MONIT OR

(HOST FLOW) (MDS FLOW)

67

LOCATE BYTE SECUENCE IN ',,DS MEMIORY

OPTION L

LCT

END AODR S & DATA
& DATA

SEND ADDR'S DO SEARCH
& DATA/CM

SEQ. NOQ N
FOUND? FUD

ESYE

PRINT *ED SN O
FOUND ADD FOUND MSG FND MSG

~~GU

(HOST FLOW) (MDS FLOW)

68

DUM1P i4DS MEMORY TO T.HE HOST CONSOLE

EOPTION M,
DU14P

GET ISEND GET SART/
START/END END ADDR

(HOS LW tD LW

GE 1.,DS SED D6T

RON

EXECUTE USER PROGRAM IN ,.DS %IEl-ORY

OPTION N E XEC

GET EXEC. JUMP TO
ADDRESS EXEC ADDR.

SEND CMD+
MDS EXEC.1ADDRESS ICOMPLETE

r4DS YESMONI TOR

(HOST FLOW) (rIDS FLOW)

70

APPENDIX C

AMES HOST CONTROL SOFTWARE LISTING

* AMDS - ALTOS MICROCOMPUTER DEVELOPMENT SYSTEM
* (HOST COLE) *

VERSION 1.5, 28 MAY 1981
LT. STEPHEN M. HUGHES - author

* This is the HOST (ALTOS) control code for the AMES.
Separate code for the MrS onboard monitor is listed
under the filename AmrSi.ASM .

* The AMDS user's manual should be consulted for
specifics not given in t1he documentation which follows.

org 100h

CPM EQU 0000H ;WARM BOOT RE-ENTRY TO C?/M
BrOS EQU 0005H ;ros ENTRY POINT
MSTATPT EQU 29H ;MrS SIO STATUS PORT
MDATAPT EQU 28H ;MDS SIO DATA PORT
CONIN EQU 1 ;CONSOLE INPUT FUNCTION
CONOUT EQU 2 ;CONSOLE OUTPUT FUNCTION
PRTSTRG EQU 9 ;PRINT STRING TO CONSOLE
REArCON EQU 10 ;REAE CONSOLE BUFFER
CONST ECU 11 ;CONSOLE STATUS FUNCTION
OPENF EQU 15 ;OPEN FILE FUNCTION
CLOSEF EQU 16 ;CLOSE FILE FUNCTION
LELF EQU 19 ;DELETE FILE FUNCTION
READF EQU 20 ;READ SEQUENTIAL FUNCTION
WRITEF EQU 21 ;WRITE SEQUENTIAL FUNCTION
MAKEF ECU 22 ;MAKE FILE FUNCTION
CURRNTD EQU 25 ;GET CURRENT DISK FUNCTION
SETLMA EQU 26 ;SET rMA ALLRESS FUNCTION
CR ECU 0LH ;ASCII CARRIAGE RETURN
LF EQU OAH ;ASCII LINE FEED
ESC EQU 1BH ;ASCII ESCkPE COLE
COMMA EQU , ;ASCII COMMA
PERIOD EQU ;ASCII PERIOD
SPACE EQU " ;ASCII SPACE
BKSPCE EQU 08H ;ASCII BACK-SPACE
XON EQU OH ;CONTROL Q

71

MINCHCE EQU 'A' AND IFH ;MINIMUM MENU CHOICE
MAXCHCE EQU "N'+1 AND IFH ;MAXIMUM MENU CHOICE
LOF EQU IAB ;CONTROL Z - END OF FILE cr

; BUFFER INDICATOR
NHSTCMD EQU 6 ;CURRENT NUMBER OF HOST C LS
STACK EqU $;64 LEVEL STACK AVAILABLE

STARTER XRA A ;INITIALIZE HOST IN CONTROL.
STA SYSSTAT
STA MENUSUPF ;MENU NOT SUPPRESSER
LXI D,SIGNON ;PRINT SIGNON AND BASIC

; INSTRUCTIONS
CALL PRINT

MENU XRA A ;INIT. MDSR YF EVERY TIMI
STA MDSRDYF
INR A ;rEFAULT TO NO MENU
STA MENUFLG ; SUPPRESSION ON MENU ERRCRS

; OTHER THAN INVALID CHOICE
MVI A,48 ;INIT. CONSOLE READ BUFFER
STA CONBUFF ; TO 46 CHARACTERS MAX
LXI SPSTACK ;SET STACK POINTER
LDA MENUSUPF ;PRINT MENU?
ORA A
JNZ MENU01 ;NO
LXI r,MENUMSG ;YES
CALL PRINT

MENUO1 CALL STATSYS ;DISPLAY SYSTEM STATUS
CALL BUFFRD ;GET MENU CHOICE
XRA A ;NO DELIMITERS ALLOWED
CALL SCAN ;CHECK INPUT FOR DELIMITERS
JNC MENU011 ; SCAN OK
LXI D,MFrELERR ;INPUT ERROR (SYNTAX LIKELY)
CALL PRINT
CALL DELAY ;RELAY TO READ ERROR MSG
JMP MENU ;BACK TO MENU

MENU011 INX D ;ALL INPUT OK, POINT TO IT
DCR B ; AT END OF BUFFER YET?
JNZ MENU011 ; NO, TRY AGAIN
LDAX D ; GET OPTION
ANI 1F3 ;DELETE ASCII BIAS
CPI MINCHCE ;IS CHOICE < 'A'?
JC MENUO12 ; YES, ILLEGAL CHCICE
CPI MAXCHCE ;IS CHOICE VALID?
JC MENUO13 ; APPEARS TO BE

MENUO12 MVI A,1 ; NO - PRINT ERROR MSG #1
JMP ERROR

MENUO13 PUSH PSW ;SAVE OPTION
CPI NHSTCMD ;IF HOST CMD, MDS CONTROL
JC MENUO14 ; HAS NO EFFECT (EXCEPT

; EXIT CMD)

72

LDA SYSSTAT ;GET SYSTEM STATUS
ORA A
JZ MENUO14 ;HOST IN CONTROL
LXI D,CNTRLMSG ;MDS IN CONTROL
CALL PRINT
JMP MENU ;ONLY ESCAPE WILL GET

; CONTROL BACK
MENU14 POP PSW ;RETRIEVE OPTION
MENUl STA MENUFLG ;SAVE CHOICE FOR USE IN

; HELPING USER LATER
CALL MENUCH ;BRANCH TO APPROPRIATE

; CHOICE

MENUCH MOV CA ;COMPUTE MENU CHOICE VECTOR
MVI B,O
LXI H,CHOICE-3
DAD B
LAD B
DAD B
PCHL ;CHOICE VECTOR IS IN PC
NOP
NOP

* THIS JUMP TABLE MAY BE ADDED TO FOR FUTURE EXPANSION UP *
TO 26 MENU CHOICES *

CHOICE JMP MENSUP ;SUPPRESS MENU
JMP NOMENSUP ;rO NOT SUPPRESS MENU
JMP INST ;INSTRUCTIONS
JMP HEXARITH ;HEX SUM & DIFF.
JMP RCNT2HST ;RETURN CONTROL TO HOSI
JMP CPM ;RETURN TO CPM

* MDS COMMAND JUMP TABLE

JMP DWNLD ;rOWNLOAD HEX FILE
JMP UPLD ;UPLOAD HEX FILE
JMP EXAM ;EXAMINE/SET MES MEMORY
JMP CSET ;CONTINOUS SET W/O EXAMINE
JMP FILL ;FILL MDS MEMORY
JMP LOCATE ;LOCATE BYTE SEQUENCE IN

; MLS MEMORY
JMP DUMP ;DUMP MDS MEMORY
JMP EXEC ;EXECUTE MDS MEMORY

*** HOST COMMANDS ONLY - MDS DOESN'T CARE WHAT IS =

** HAPPENING ***

* MENU SUPPRESSION *

73

MENSUP MVI A,l ;SET MENU SUPPRESSION FLAG
STA MENUSUPF
JMP MENU

NO MENU SUPPRESSION (DEFAULT)

NOMENSUP XRA A ;RESET MENU SUPPRESSION FLAl
STA MENUSUPF
CALL CRLF
JMp MENU

INST - INSTRUCTIONS *

INST LXI L,INSTRUC ;PRINT INSTRUCTIONS
CALL PRINT

INST. CALL CONSTAT ;WAIT FOR RESPCNSE
RRC
JNC INSTI ;LOOP
CALL CONSIN ;GET CHARACTER
JMP MENU

HEXARITH - ArDITION/SUBTRACTION OF TO HEXADECIMAL
NUMBERS *

HEXARITH LXI DHEXMSG ;PRINT VERIFICATION MESSAGE
CALL PRINT
CALL BUFFRD ;GET INPUT
MVI A,1 ;ONE DELIMITER REQUIREL
CALL SCAN ; CHECK FOR IT
JNC HEXi ; ALL rELIMITERS OK
MVI A,2 ;DELIMITER ERROR
JMP ERROR

HEXi CALL GET4BIN ;GET FIRST NUMBER
SHLL FIRST ; SAVE IT
CALL GET4BIN ;GET SECOND NUMBER
SHLL SECOND ; SAVE IT
MOV B,H ;BC = SECOND NUMBER
MOV C,L
LHLr FIRST ;HL = FIRST NUMBER
DAD B ;HL = HL + BC
SELD SUM ;SAVE SUM
LELD FIRST ;HL = FIRST NUMBER
ORA A ;CLEAR CARRY
MOV A,L ;EL = EL - BC - CARRY
SUB C
MOv L,A
MOV A,E
SBB B
MOV H,A
PUSH H

74

POP B ;BC = rIFFERENCE
LXI H,HEXMSG2+7 ;CONVERT FOR PRINTIN'G
CALL CNVT16
LHLE SUM ;NOW PREPARE SUM FOR
PUSH H ; PRINTING
POP B ;BC = SUM
LXI H,HEXMSG1+6
CALL CNVT16
LXI D,HEXMSGI ;PRINT SUM & DIFFERENCE
CALL PRINT
CALL CRLF
JMP MENU ;RETURN TO MENU

*** MES COMMANES - INITIATED BY HOST IN ALL CASES ***

* DWNLD - REX FILE DOWNLOAD FROM DISK TO MDS MEMORY *

LWNLD LXI D,DWNLrMSG ;PRINT VERIFICATION MESSAGE
CALL PRINT
CALL GETFILEN ;GET & CRECK FILENAME
LXI DFCB ;OPEN FILE
CALL OPENFILE
CPI 255 ;FILE FOUND?
JNZ OPENOK ; YES
MVI A,13 ; NO, ERROR
JMP ERROR

OPENOK MVI A, 'W ;SEND rOWNLOAr CMr ro MrS
CALL MDSCMD
XRA A ;RESET CONTINUATION &
STA CONTFLG ; FIRST THROUGH LOOP FLAGS
STA FIRSTIME

RLFILE LXI H,rSKBUFF ;POINTER TO DISK BUFFER
CALL REArSK ;REAL IN AS MUCH AS POSSIBLE
LXI H,DSKBUFF ;NOW CONVERT IT TO BINARY &

; SENt IT TO MES
RECHr MOV AM ;FINE ":" AS RECORD START

CPI
JZ RECLEN ;FOUNL IT
INX H
CALL EOFCK ;END OF FILE/BUFFER?
JMP RECHE ; NO, TRY AGAIN

RECLEN MVI B,0 ;INIT. CHECKSUM
CALL HEIBIN ;GET RECORD LENGTH
ORA A ;IF RECLEN=O, THEN LONE
JZ DWNLrNE ; DONE
STA BUFFCNT ;SAVE THE RECLEN
MOV CA ; NOT DONE - SAVE RECLEN
CALL MDATAOUT ;SENL IT TO MrS
CALL GETSADR ;GET START ADDRESS

75

LDA FIRSTIME ;IF FIRST TIME THROUGH LOOP
RRC ; THEN SAVE ADR FOR LATEF
JC RECLENI ;NOT FIRST TIME
LCR A ;SET THE FLAG
STA FIRSTIME
SHLD START ; AND SAVE THE ADDRESS

RECLENI SHLr FINISH ;SAVE OTHER LOAD AERS
CALL ADROUT ;SEND ADDRESS TO MLS
XCHG ;GET BUFFER PCINTER BACK
CALL HEXBIN ;IGNORE RECORD TYPE

HEXEATA CALL HEXBIN ;GET DATA BYTE
CALL MDATAOUT ;SEND DATA TO MDS
DCR C ;rECREMENT RECORD LENGTH
JNZ HEIDATA ; MORE TO SET
CALL CRECKIT ;SEE IF CKSUM IS OK
INX H ;GET NEXT RECORD
JMP RECED

DWNLDNE LHLD START ;GET STARTING LOAD ALDR
PUSH H
POP B ;PREPARE IT FOR PRINTING
LXI H,DWNDONE1+20
CALL CNVT16
LHLL FINISH ;NOW READY THE FINISH ALLR
LDA BUFFCNT ;GET RECLEN
ALI L
MOV L,A
MOV A,H
Acl 0
MOV H,A
PUSH H
POP B
LXI H,DWNDONE1+43
CALL CNVT16
LXI DLWNDONE ;PRINT COMPLETION MESSAGE
CALL PRINT
CALL DELAY
CALL HOSTtONE ;TELL MIS DONE
JMP MENU

GETSADR CALL HEXBIN ;GET STARTING LOAD AZDRESS
MOV DA ; FOR RECORD
CALL HEXBIN
MOV E,A
XCHG ;HL = LOAD ADDRESS

;DE = BUFFER POINTER
RET

CHECKIT CALL HEXBIN ;CHECK FOR CORRECT CSECKSUM
XRA A
ADD B ;SHOULD BE ZERO
RZ ; OK

7e

- - __- 1 1 1j.E

MVI A,14 ;CHECKSUM ERROR
JMP ERROR

UPLL - HEX FILE UPLOAL (SAVE) OF MrS MEMORY TO ISK *

UPLD MYI A,128 ;INIT. BUFFER COUNT
STA BUFFCNT
LXI rUPLDMSG ;PRINT VERIFICATION MESSAGE
CALL PRINT
CALL GETFILEN ;GET FILENAME & CdECK IT
LXI L,FCB
CALL DELETE ;LELETE ANY EXISTING FILE
CALL CREATE ;CREATE A NE4 FILE
CPI 255 ; CREATE OK?
JNZ UPLD01 ; YES
MVI A,16 , NO, OUT OF EIRECTCRY SPACE
JMP ERROR

UPLD0I CALL BUFFRD ;GET ADDRESS INPUTS
MVI AI ;ONE LELIMITER ALLOWED i
CALL SCAN
JNC UPLDI ;SCAN OK
MvI A,2 ;ERROR
JMP ERROR

UPLDI CALL GET4BIN ;GET MDS START & FINISH
SHLr START ; ADDRESSES FOR UPLOAZ
CALL GET4BIN
SHLD FINISH
XCHG ;LE = FINISH ALDRESS
LHLD STAET ;CHECK FOR START > FINISH
MOV A,E
SUB L
MOV A,D
SBB H
JNC UPLE2 ; OK
MVI A,17 ;ERROR - START > FINISH
JMP ERROR

UPL12 MVI A,'U' ;SEND UPLOAD CML TO MrS
CALL MDSCMD
LHLD START ;SEND START & END ADDRESSES
CALL AEROUT
LHLr FINISH
CALL ADDROUT
LXI H,ESKBUFF

UPLD3 MVI A,': ;STCRE RECORD HEADER
CALL BUFFCK
CALL WRITLEN ;STORE RECORD LENGTH
CALL WRITAELR ;STORE STARTING LOAD ADDR

; & RECORD TYPE
CALL WRITDATA ;GET AND STORE DATk
CALL WRITCKS ;STORE CHECKSUM & CR,LF

7?

JMP UPLD3 ;DO ANOTHER HEX RECORD
ORITLN01 XRA A ;WRITE LENGTH, ALTERNATE

JMP WRITLENI ; ENTRY FOR ZERO RECLEN
VRITLEN MVI A,16 ;ALL RECORDS HAVE RECLEN=16

; EXCEPT THE LAST
RITLEN1 MVI Bo ;INIT. CRECKSUM

CALL BINHEX ;CNVRT TC HEX ASCII & STCRE
RET

WRITALLR LrA START+l ;STORE RECORD START AELR
CALL BINHEX
LEA START
CALL BINHEX
PUSH 9 ;SAVE BUFFER POINTER
LHLE START
LXI r,16 ;BUMP START ArLR FOR NEXT
DAD D; TIME
SHLE START
POP H ;RESTORE BUFFER POINTER.
XRA A ;STORE RECORD TYPE
CALL BINHEX
RET

WRITDATA MVI C,16 ;DATA COUNTER
WRITLTAI CALL MrSIN ;GET rkTA FROM MLS

LDA MDSRDYF ;MORE DATA OR MLS LONE?
RRC
JC WRITrNE ; MLS LONE
CALL BINEEX ;MORE rATA
DCR C ;16 BYTES YET?
RZ ; YES
JMP WRITDTAI ; NO, CONTINUE

WRITDNE XRA A
DCR C ;FILL REVAINLER OF RECORE
JZ WRTDNO01 ; WITH ZEROS
CALL BINHEX
JMP WRITENE

NRTLN001 CALL WRITCKS ;STORE CHECKSUM
CALL WRITEND ;STORE LAST RECORD
LLA BUFFCNT ;IS BUFFER FULL?
MOV BA
CPI 128
JZ WRITLNEI YES

WRITrN01 MVI M,EOF ; NO, FILL REMAINdER WITH
INX a ; EOF's
CR B ;LONE WITH FILL?

JNZ WRITDN01 ; NO, CONTINUE
CALL WRITEDSK ; YES, WRITE RECORD TO DISK

WRITrNE1 CALL CLOSFILE ;CLOSE THE FILE
LXI DUPLDONE ;PRINT CCMPLETION MESSAGE
CALL PRINT
CALL LELAY
JMP MENU

78

iRITCKS MCV A,B ;STORE CHECKSUM
CMA ;GET NEGATIVE OF SUN'
INR A ; ArL ONE
CALL BINHEX
MVI ACR ;STORE CR,LF SEQUENCE AT
CALL BUFFCK ; HEX RECORL ENr
MVI A,LF
CALL BUFFCK
RET

4RITEND MVI A,'.' ;STORE LAST HEX RECORr
CALL BUFFCK
CALL WRITLNe1 ;STORE 00 RECORr LENGTH
XCHG ;DE = BUFFER POINTER
LXI H,000H ;STORE 0000 LOAL kER i
SHLL START ; RECORL TYPE
XCHG ;HL = BUFFER POINTER
CALL WRITALER
CALL WRITCKS ;STCRE CHECKSUM
RET

BUFFCK MOV M,A ;STORE rATA
INX ff
LDA BUFFCNT ;IS BUFFER FULL?
rCR A
JZ WRITSIT ; YES, SAVE IT ON rISK
STA BUFFCNT ; NO, SAVE COUNT
RET

WRITEIT CALL WR[TELSK ;WRITE 128 BYTE RECORr TO
; DISK

LXI H,rSKPUFF ;REINIT. BUFFER AREA
MVI A,128 ; ANr BUFFER COUNT
STA BUFFCNT
RET

EXAM - EXAMINE/SET MES MEMORY LOCATION(S)

EXAM LXI E,EXAMSG ;PRINT VERIFICATION MESSAGE
CALL PRINT
CALL BUFFRD ;GET ADDRESS INPUT
XRA A ;NO DELIMITERS ALLOWEL
CALL SCAN ;EELIMITER CHECK
JNC EXAM01 ; SCAN OK
MVI A,2 ;INPIT ERROR (SYNTAX OR HEX)
JMP ERROR

EXAM01 CALL GET4BIN ;GET START ADLRESS
SHLL START
MVT A,' X' ;SENL EXAM/SET cMr TO 'DS
CALL MDSCMD
LHLL START
CALL ArrROUT ;SENr START AELRESS TO MES

EXAM1 CALL MDSIN ;GET DATA IN MDS MEMORY
STA MrSrATA ; SAVE IT

79

PUSH H ;SAVE ArDR. BEING EXAMINEE
MOV C,A ;C = MDSDATA
LXI d,EXAMSG2+1 ;CONVERT DATk FOR PRINTIN,
CALL CNVT8
POP B ;GET ADDR. BACK,
PUSH B ; BUT SAVE IT
LXI H,EXAMSG1 ;CONVERT ALER. FOR FRINTING
CALL CNVT16
XCHG ;LE = EXAMSG1
CALL PRINT ;PRINT MLS ALDR. & LATA
CALL BUFFRDI ;GET REPLACEMENT lATA
ORA A ; IF NO INUT, THEN PUT OLr
JZ NOSET ; DATA BACK
KRA A ;NO DELIMITERS ALLOWED
CALL SCAN
JNC EXAM02 ; SCAN OK

EXAM020 MVI A,2 ;INPUT ERROR
JMP ERROR ;START OPTION OVER

EXAM02 CALL CKPERIOD ;IF INPUT WAS A PERIOD,
ORA A ; THEN DONE
JZ EXAM2 ; NO PERIOD, GET DETA
RAR ;PERIOL ONLY?
JC EXDONE ; YES - ALL DONE
MVI A,3
JMP ERROR ; NO - PERIOD + DATA IS

ILLEGAL, START OVER
EXAM2 CALL GET2BIN

MOV A,L ;SEND NEW DATA
JMP SETI

NOSET LrA MrSrATA ;GET OLD DATA
SET1 CALL MDATAOUT

POP H ;BUMP ADDRESS FOR EXAM./SwT
INX H
JMP EXAMI ;GET MORE DATA FRO M MrS

EXDONE CALL HOSTDONE ;SIGNAL MDS DONE
JMP MENU ;BACK TO MENU

FILL - FILL MIS MEMORY LOCATION(S) WITH SPECIFIED DATA

FILL LXI r,FILLMSG ;PRINT VERIFICATION MESSk2iE
CALL PRINT
CALL BUFFRD ;GET INPUT ADDRESSES + FILL

; RATA
MVI A,2 ;T4O L77IMITERS REJIRED
CALL SCAN ; C3ECX 2OR THEM
JNC FILL1 ; SCAN O
MVI A,2 ;JMP ERROR
JMP ERROR ; START OPTION OVER

FILLI CALL GET4BIN ;GET START AEDDESS
SHLD START ; SAVE IT

80

CALL GET4BIN ;GET FINISH ADDRESS
SHLr FINISH ; SAVE IT TOO
CALL ;ET2BI, ;GET FILL DATA
MOV A,L ;A = DATA
STA CONSLATA ; SAVE IT
MVI A,'F ;SEND FILL CME TO MRS
CALL MDSCMD

LHLE START ;SEND START AELR. TO MrS
CALL ArDROUT
LHLD FINISH ;SEND FINISH ADDR. TO "tS

CALL ArEROUT
LLA CONSrATA ;SENL FILL DATA TO MES
CALL MDATAOUT
Mvi A,. ;MrS IN CONTROL

STA SYSSTAT
FILL2 CALL MDSIN ;MDS DONE FILLING?

XRA A YES - CLEAR FLAGS
STA STSSTAT
STA MDSRDYF
JMP MENU ;RETURN TO MENU

* SEND 16 BIT ALERESS TO MES - CALL WITH HL = ArDRESS

ALEROUT MOV A,H ;MSB FIRST
CALL MrATACUT
MOv A,L ; THEN LSB
CALL MEATAOUT
RET ;BACK TO CALLER

CSET - CONTINUOUS SET MDS MEMORY WITEOUT EXA ;NE "

CSET LXI E,CSETMSG ;PRINT VERIFICATION MrSSA;E
CALL PRINT
MVi A,OFFH ;INIT. CONSOLE REAr BUFFER
STA CONBUFF ; TO 255 CHARACTERS AA
CALL BUFFRD ;GET START ADDRIESS
XRA k *NO LELIMITEBS ALLOWEL
CALL SCAN
JNC CSET01 ; SCAN OK
MVI A,2 ;INPUT ERROR
JMP ERROR ;START OPTION OVER

CSET01 CALL GET4BIN
SHLr START
MVI APC" ;SEND CSET C D TO MLS
CALL MDSCMD

LHLL START ;SEND START AMDRESS TO M:S
CALL AEDROUT
JMP CSETI1

CSETI CALL CELF
CSETI1 CALL BUFFRD ;GET REPLACEMENT DATA TILL

BUFFER FULL OR <CR>

81

CALL SCAN LOOK FOR ESCAPE
CALL CKPERlOD ;CHECK FOR PERIOD IN INPUT
ORA A
JZ CSET2 ; NO PERIOD, GET DATA
RAR
JC CSET3 ; PERIOD ONLY - ALL DONE
MVI A,3 ;INPUT ERROR,
JMP ERROR ; START OPTION OVER

CSET2 CALL STAR ;PRINT A LEADING STAR
; PRIOR TO VALIDATIONi DATA

CSET21 CALL ;ET2BIN ;GET DATA
MOV A,L
CALL MEATAOUT ;SEND IT TO L13
MOV C,A
LXI H,DATAMSG+l ;SEND IT TO CONSOLE FOR
CALL CNVTS ; VERIFICATION
XCHG ;LE = AlDR. OF rATAMSG
CALL PRINT
XCHG ;DE = CURRENT CONBUFF PTR
MOV A,B ;AT END OF BUFFER?
CPI OFFH
JZ CSET1 ; YES, START OVER
CPI 00
JZ CSET1 ; YES, START OVER
JmP CSET21 ;NO, JET MORE DATA

CSET3 CALL ROSTDONE ;NO DATA TO SEND, SI NAL
; MDS DONE

JMP MENU ;RETURN TO MENU

EXEC - EXECUTE MrS MEMORY FROM A SPFCIFIED ADDRESS

EXiC LXI E,EXECM.SG ;PRINT VERIiLCATION MESSAGE
CALL PRINT
CALL BUFFRD ;GET START ADDRESS
XRA A ;NO DELIMITERS ALLOWED
CALL SCAN
JNC EXECI ; SCAN OK
MVI &,2 ;ERROR
JMP ERROR ;START OPTION OVER

EXECi CALL GET4BIN ;GET START ADDRESS
SHLr START ; SAVE IT
LXI D,EXMS- ;SEE IF DATA FROM MrS TO
CALL PRINT ; CONSOLE OR NCT

EXECI CALL CONSTAT ;'AIT FOR RESPONSE
RRC
JNC EXECili ; LOOP
CALL CONSIN ;GET RESPONSE
ORI 20H ;FORCE TO LOWER CASE
CPI y ;CONSOLE INPUT FROM MDS?
JNZ EXEC2 ; NO, SEND Crl & RETURN TO

TO MENU

82

LXI D,EXMSG2 ;GIIE ESCAPE VETHODS
'ALL PRINT
M7I A,'E" ; YES, SENL CVL TO YIS &
CALL VDSCMD ; LOOP kAITING FOR rATA
LEL START ; OR LONE FROM LS OR ESC

; FRO, CONSOLE
CALL ArDROUT

EXEC023 CALL MLSIN ;LOOP T MLSIN TILL ESC
; OR 'V" OR DATA

MOV E,A ;SAVE DATA FROM MDS
LD& t'lSRtYF ;SEE IF]tS 4ANTS INPUT
ORA A
JNZ GETINP ; YES
CALL CONSOUT ; NO, SEND IT TO CONSOLE
JMP EXEC2 ; WAIT FOR MORE

GETINP CALL CONSTAT ;GET INPUT FROM KEYBOARD
RRC
JNC 21ET I NP
CALL CONSIN
CALL r-ATAOUT ;SEND IT TO VIS
XRA A ;RESET MrSREY FLAG
STA MDSRLYF
JMP EXEC020 ;LOOP AGAIN

EXEC2 MVI A,'E" ;SEND MrS EXEC CML
CALL MDSCMD
LHLL START ;SEND START ADDRESS -O MrS
CALL AEDROUT
MVI kt ;SET MDS CONTROL FLAG
S1k. SYSSTAT
JMP MENU ;BACK TO MENU

LOCATE - LOCATE A SPECIFIED BYTE SEQUENCE IN MDS MEMORY *

LOCATE CALL CLRBUFF ;CLEAR REAL BUFFER
LXI D,LOCMSG ;PRINT VERIFICATION MESSAGE
CALL PRINT
mvi A,0FF'R ;INIT. CONSOLE REAL EUFFER
STA CONBUFF ; TO 255 CHARACTERS MAY
CALL BUFFRE ;GET ADRESS(ES)
XRA A ;ANT DELIMITERS ?
CALL SCAN
JNC LOCATEI ; NO, USE DEFAULT FINISH

; ADDRESS
MvI A,1 ;MORE THAN ONE DELIMITER?
CALL SCAN
JNC LOCe1 ; NO, GET OPTIONAL FINISH

; ADDRESS
MVI k,2 ;MORE THAN 2 DELIMITERS
JMP ERROR ; ERROR, START OPTION OVER

LOCATEI CALL GET4BIN ;GET START ADDRESS
SHLL START

83

JMP LOC1 ; NO COMMA, FINISH AErRE3S
; DEFAULTS TO OFFFFR -
; GET LATA

LOCZi CALL jET4BIN ;GET START ALLRESS
SHLD START
CALL GET4BIN ; COMVA, GET FINISH ADDRESS
SHLr FINISH
JMP LOCDATA

LOC1 LXI d,0FFFFH ;SAVE LEFAULT FINISH AtLRESS
SHLD FINISH

LOCDATA MVI A,'L" ;SEND LOCATE CMr TO iDS
CALL MLSCML
LHLr START ;SEND START ALIRESS TO MrS
CALL ADDROUT
LHLL FINISH ;SEND FINISH ADDRESS TO MrS
CALL ALDROUT
MVI A,16 :16 BYTES MAX
PUSH PSW ; SAVE BYTE COUNT

LCCIATAI CALL BUFFRE ;GET SEARCH SEQUENCE
CALL SCAN ;LOOK FOR ESCAPE
CALL STAR ;PRINT A STAR

LOCrATA2 CALL GET2BIN ;GET A BYTE
MOV A,L
CALL MEATAOUT ;SEND IT TO MrS
MOV C,A
LXI H,DATAMSG l & TO CONSOLE FOR
CALL CNVT8 ; VERIFICATION
XC HG
CALL PRINT
XCHG
MOV A,B ;AT END OF BUFFER?
CPI OFFH
JZ LOC5 ; YES, WAIT FOR SEARCH

RESULTS
CPI 00
JZ LOC5 ; YES, WAIT FOR SEARCH

RESULTS
POP PSW ; NO, GET BYTE COUNT
LCR A ;16 BYTES YET?
PUSH PSW ;SAVE BYTE COUNT
JZ LOC5 ; YES, WAIT FOR SEARCH

; RESULTS
JMP LOCLATA2 ; NOT AT END OR 16 BYTES

LOC5 CALL HOSTRDY ;TELL MDS TO SEARCR
CALL MLSIN ;GET VrS RESPONSE
ORI 80H ;LOOKING FOR ASCII
CPI "F" ;BYTE SEQ. FOUND?
JZ FOUND ; YES
LXI D,NOTFOUND ;PRINT NOT FOUND MESSAGE
JMP ERROUT ; BACK TO MENU

FOUND LXI L,FOUNLMSG ;PRINT FOUNr MESSAGE

64i

CALL PRINT
CALL MDSIN ;'ET FOUND ADDRESS MSB
MOV B,A
CALL MrSIN ;ZET LSB OF ADLR
mOV C,A
LXI H,FOUNDMS1 ;CONVERT AErR. FOR PRINTING
XCH
CALL PRINT ;PRINT ADDRESS
JMP MENU ;BACK TO MENU

r DUMP - DUMP MDS MEMCRY LOCATION(S) *

LUVP CALL CLRBUFF ;CLEAR REAL BUFFER
LXI D,LUMPMSG ;PRINT VERIFICATION MESSA&E
CALL PRINT
CALL BUFFR£ ;GEr ADDRESS(ES)
XRA A ;ANY DELIMITERS?
CALL SCAN
JNC ElUMP@1 NO
MVI A,I ;MORE THEN ONE DELIMITER?
CALL SCAN
JNC DUMP01 ; NO, GET OPTIONAL FINISH

ADDRESS
MVI A,2 ;MORE THAN ONE DELIMITER
JMP ERROR ; ERROR, START OPTION OVER

LUMP01 CALL 0ET4BIN ;CET START ADDRESS
SHLD START
JMP LUMPi , NO COMMA

LUMP01 CALL GET4BIN ;"ET START ADDRESS
SHLD START
CALL GETMBIN ;GET OPTIONAL FINISH AEDR
SffLD FINISH
JMP DUMP2

LUMPi LHLD START ;MAKE FINISH ADDRESS =

LXI B,0100H ; START + 256
DAD B
SHLL FINISH

DUMP2 MVI AtD ;SEND rUMP Cmr TO MrS
CALL MDSCMD
LHLL START ;SEND START ADDRESS TO MrS
CALL ADDROUT
LHLD FINISH ;SEND FINISH ADDRESS TO MDS
CALL &DDROUT

LUMP3 LXI t,LUMPMSG3 ;ASCII DATA STORAGE
PUSH D
CALL MSG31NIT ;INIT. ASCII STORAGE
CALL MDSIN ;GET BYTE
MOV C,A
LDA MLSRLYF ;MDS LONE TRANSMITING LATk?
ORA A
JNZ DUMPDONE ; YES

85

MOV IC
STA MISLATA ; NO - SAVE DATA
LHLD START ;BC = START ADDRESS
MOV B,H
MOV C,L
LXI H,DUMPMSGI
CALL CNVT16
XCHG
CALL PRINT
mVI B,16 ;SIXTEEN BYTES PER LINE

DUMPDATA POP D ;RECALL ASCII EATA STORAGE
; LOCATION

LrA MLSrAT& ;GET rATA
MOV C,A ;IS DATA ASCII PRINTABLE?
CPI 20H
JNC EMPETAt ; YES
CALL SPERIOL ; NO - STORE A PERIOD
JMP DMPDTA2

L PTA1 CPI 80H ;GREATER THEN ASCII
CNC SPERIOr ; YES, STORE A PERIOD

LMPDTA2 STAX D ; STORE DATA AS IS
MOV AC ;RESTORE ORIGINAL DATA
INX r ;BUMP STORAGE ADDRESS
PUSH D ; AND SAVE IT
LXI H,DUMPMSG2+1 ;NOW CONVERT DATA TO HEX

; AND PRINT IT
PUSH B ;SAVE COUNT
CALL CNVT8
XCHG
CALL PRINT
POP B ;GET COUNT BACK
FCR B ;16 BYTES YET?
JZ NXTLINE ; YES
CALL MDSIN ; NO - GET NEXT BYTE
STA MDSDATA ;SAVE NEW DATA
MOV C,A ;MDS DONE TRANSMITING DATA?
LEA MDSRDYF
ORA A
JNZ NXTLINE ; YES
JMP LUMPDATA ; NO - GET NEXT LINE OF DATA

SBERIOD MVI A,. ;STORE A PERIOD IF NOT A
RET ; PRINTABLE ASCII CHAR.

NXTLINE LXI D,rUMPMSG3 ;PRINT ASCII CHARACTERS
CALL PRINT
LXI B,0010H ;GO TO NEXT LINE
LHLr START ;BUMP NEW LINE STkRT ADDRESS
rAr B ; BY SIXTEEN BYTES
SHLD START ; SAVE IT
POP D ;GET GARBAGE OFF STACK
LDA DSRDYF ;LONE?
ORA A

86

_ _ -

JNZ DUMPEONE ; YES

CALL CRLF ;START NEW LINE
DUMP3 ;"IUMP TILL LONE

LUmPrONE k ;CLEAR MLS LONE XVITTING FLG
S1.1 MLSRrYF
CALL CRLF ;START isE LINE
CALL BUFFRr ;ANOT3ER LUMP?
XRA A ;NO LELIMITERS ALLOWEL
CALL SCAN
JNC rMPLONEI ; SCAN OK
MVI A,2 ;ERROR
JMP ERROR ; START OPTION OVER

PEOLE1 INX r ;POINT TO ENL OF BUFFER
LCR B ; THERE YET?
JNZ DMPDONE1 ; NO, LOOP
LLAX L
ORI 20H ;CONVERT TO LOWER CASE
C P I

A "

JZ LUMPMORE ; YES - 76UMP AGAIN FROM
PREVIOUS FINISH ALrR.

JMP MENU ; NO - RETURN TO MENU
EUJMPMORE LHLr FINISH ;MAKE FINISH+I = NEW START

INX H ; ALLRESS
SHLD START
JMP LUMPi ;LUMP 256 MORE BYTES

MSG3INlT MVI B,17 ;INIT. ASCII LATA STORAGE
LXI D,DUMPMS43 ; AREA TO ALL $'S
MVI,

MSG1 STAX L
DCR B
RZ ;INIT. LONE
INX
JMP MSG31

CLRBUFF MVI B,255 ;CLEAR CONSOLE REAL BUFFER
LXI r,CONBUFF+I
MVI A,00 ;PUT IN ALL ZEROS
JMP MSG31

RCNT2HST - RETURN CONTROL TO HOST *

RCt;T2HST LrA SYSSTAT ;GET SYSTEM STATUS
ORA A
JZ MENU ; HOST ALREALY IN CONTROL
MVI A,'Q. ;SEND ESCAPE TO MDS
CALL MLSCML
XRA A ;RESET SYSTEM STATUS FLA&
STA SYSSTAT
LXI L,ABORTErM ;PRINT MLS ABORTEr VERIFI-
CALL PRINT ; CATION
CALL DELAY
JMP MENU

87

UTILITY SUBROUTINES ***

PRINT A STRING TO THE CONSOLE
CALL 4ITB LE = STARTING ArLRESS OF STRING

PR I1T PUSH PSW ;SAVE EVERYTdING
PUSH B
PUSH r
PUSH H
Mvi C,PRTSTRG ;OUTPUT STRING TO CONSCLfi
CALL B£OS
POP a ;RESTORE ALL REGISTERS
POP D
POP B
POP PSW
PET ;BACK TO CALLER

STATSYS - LISPLAY SYSTEM STATUS

STATSYS CALL CRLF
CALL CRLF
LLA SYSSTAT ;3ET SYSTEM STATUS FLAG
ORA A
LXI L,SYSVSG+15
JZ SYSI ;HOST IN CONTROL
LXI H,MDSMSG ;MDS IN CONTROL
JMP SYSI+3 ;PUT 'MES" IN MESSAGE

SYSI LXI H,HOSTMSG ;PUT 'HOST' IN MESSAGE
CALL MOVESTR
LEA MENUSUPF ;GET MENU SUPPRESSION FLAG
ORA A
LXI D,SYSMSG+33
JZ SYS3 ;NO SUPPRESSION
LXI H,YESMENMG ;SUPPRESSION
JMP SYS3+3

SYS3 LXI HNOMENMSG
CALL MOVESTR
LXI DSYSMSG ;PRINT SYSTEM STATUS
CALL PRINT
CALL MENPMPT ;PRINT MENU PROMPT
RET ;RETURN TO CALLER

MOIESTR MOV A M ;Hl STRING TO MOVE
CPI ;LE = LESTINATION ALtRESS
Rz ;RETURN IF MOVE DONE
STAX ; O ONE
INX r
INX H
JMP MOVESTR ;MOVE NEXT CHARACTER

*MENPMPT - PRINT MENU PROMPT

88

MENPMPT LLA MENUSUPF ;SUPPRE3S MENU?
ORA A
JZ MENPMTI ; NO
LXI E,MENUPRO1 ; YES - PRINT SUPPRE3Er
CALL PRINT ;MENU PROMPT
RET

MENPMT1 LXI r,MENUPROM ;PRINT UNSUPPRESSE1 MENU
CALL PRINT ; PROMPT
RET

** ROUTINES TO GET &Nr CHECK FILENAMES FOR VkLIrITY
* ONLY INTEL 'EX' FILES ARE SUPPORTED BY THIS VERSION *

GETFILEN - INITIATE CALLS FOR INPUTTING FILENAME AND
* MAKING APPROPIATE CHECKS *

GETFILEN CALL CLRBUFF ;CLEAR CONSOLE INPUT BUFFER
LXI r,FILENAME ;PROMPT FOR FILENAME
CALL PRINT
CALL BUFFED ;GET FILENAME
CALL FILENCK ;to CHECKS ON FILENAME
ORA A ;SEE IF ANY ERRORS
JZ GETFNI ; NO ERRORS
CALL ERROR ; ERRORS
JMP GETFILEN ;START OVER

GETFNI CALL MOVFN ;MOVE FILENAME TO FCB
CALL UCASE ;CONVERT ALL FILENAME
RET ; ALPHABETICS TO UPPER CASE

FILENCK - INITIATE ALL FILENAME CHECKS
RETURN A = 00 IF NO ERRORS

* = ERRCR NUMBER IF ERRORS IN FILENAME *

FILENIC CALL SCANQ ;SCAN FILENAME FOR '?'
RRCI

JNC FNCK1 ;NONE FOUND
MVI A,7 ;ERROR - NO APBIGUOUS
RET ; FILENAMES

FNCK1 CALL SCANCOL ;CHECK FOR ':' AND PROPER
RRC ; LRIVE SELECTION
JNC FNCK2 ;SCAN OK
MVI A,8 ;TOO MANY COLONS
RET

FNCK2 CALL SCANUM ;CHECK FOR TOO MANY OR TCO
RRC ; FEW CHARACTERS IN FILENAME
JNC FNCK3 ;NO ERROR
MvI A,9 ;ERROR
RET

FNCK3 CALL CKPERIOD ;CHECK FILENAME INPUT FOR
ORA A ; A PERIOD
JZ FNCK4 ;NONE FOUND

CALL SCANHEX ;ONE PERIOD, CHECK FCR
RRC ; 'HEX' FILETYPE
JNC FNCK4 ;FILETYPE OK
MVI A,10 ;ONLY 'HEX' FILETYPES ARE
RET ; SUPPORTED

FNCK4 XRA A ;CHECK FOR ESCAPE ANr
CALL SCAN ; OTHER DELIMITER ERRORS
JNC FNCK5 ;NONE FOUND
MVI A,11 ;NO SPACES ALLOWED IN
RET ; FILENAME

FNCK5 CALL SCANINV ;CHECK FOR NON-PRINTABLE
RRC ; CHARACTERS IN FILENAME
JNC FNCK6 ;NONE FOUND
MVI A,12 ;ERROR
RET

FNCK6 XRA A ;NO ERRORS DETECTED
RET ; FILENAME OK

SCANQ - SCAN FILENAME FOR QUESTION MARKS INDICATING AN
*AMBIGUOUS FILENAME

RETURN A = 00 IF NONE FOUND
* = ~FFH IF FOUND *

SCANQ PUSH B
PUSH D
PUSH H
XCHG ;HL = BUFFER + 1
MOV CM ;GET BUFFR COUNT

SCANOI INX H
MOV AM ;LOOK FOR '?'
CPI
JZ SCANQI ;FOUND ONE
DCR C ;KEEP LOOKING?
JNZ SCANQ01 ;SCAN NOT DONE

XRA A ;SCAN DONE - NO ERRORS
JMP SCANQ1+2

SCANQ1 MVI A,OFFH ;AT LEAST ONE '?' FOUND
POP H
POP D
POP B

RET

SCANCOL - SCAN FILENAME FOR A ":" THEN LOOK FOR PROPER
*DRIVE SELECT CODE (ONLY CURRENT LRIVE IN USE

IS SUPPORTED, OTHERS ARE IGNORED)
- A ': IN ANY OTHER POSITION IN THE FILENAME IS

*NOT LEGAL
RETURN A = 00 IF NO ERROR

* = OFFE IF AN ILLEGAL ":" IS FOUND *

SCANCOL PUSH B

90

PUSH D
PUSH a
CALL CURrSK ;GET CURRENT LISK
ORI 40H ;CONVERT IT TO A CHARACTER
INR A
STA CURRENT ;SAVE IT
XCHG ;GET BUFFER COUNT
MOV C,M
INX H
INX H ;THE ONLY ':' WOULD BE HERE
DCR C
Mov
CPI
JNZ SCANCOLl ;NONE HERE
DCX H ;FOUND IT, CHECK FOR
INR C ; CORRECT DRIVE
MOV A,M
ANI OZFH ;FORCE TO UPPER CASE
MOV B,A
LDA CURRENT
CMP B ;SAME?
Jz SCNCOL11 ; YES, OK
LXI D,DRIVERR ; NO, PRINT WARNING &
CALL PRINT ; IGNORE IT
CALL DELAY
INX H
DCR C
iMp SCANCOL2 ;CONTINUE SCAN

SCANCOLl DCX H ;CHECK IF Ist CHAR IS "
INR C

SCNCOL11 MOV AM
CPI
JZ SCANCOL3 ; YES, ERROR
DCR C ; NO
JZ SCNCOLDN ;SCAN DONE
INX H ;SCAN NOT DONE
DCR C

SCANCOL2 INX H
MOV A,M ;SEE IF ANY MORE ":"
CPI
JZ -CANCOL3 ; TES, ERROR
DCR C ; NO
JNZ SCANCOL2 ;CONTINUE SCAN

SCNCOLDN XRA A ;DONE, NO ERRORS DETECTED
JMP SCANCOL3+2

SCANCOL3 MVI A,OFFH ;Too MANY
POP H
POP E
POP B
RET

91

* SCANHEX - SCAN FILETYPE FOR 'HEX'

RETURN A = 0o IF FOUNr
= OFFH IF NOT FOUNE *

SCANHEX PUSH
PUSH D
PUSH H
XCHG ;GET BUFFER COUNT
MOv cm

SCANHX1 INX H ;GO TO PERIOL
MOV A,M
CPI PERIOD
JZ COMPARE ;FOUNI IT
LCR C
JNZ SCANHXI ;KEEP LOOKING
JMP SCNHXER ;ERROR, NO PERIOr

COMPARE INX H
MOV AM
ANI OLFH ;FORCE TO UPPER CASE

CPI "H"
JNZ SCNHXER ;ERROR
INX H
MOV AM
ANI oDFH
CPI

E "

JNZ SCNHXER
INX H
MOV A,M

ANI orFH
CP I

x1

JNZ SCNHXER
XRA A ;NO ERROR
JMP SCNHXER+2

SCNHXER MVI A,OFFH ;ERROR
POP H
POP)
POP B
RET

* SCANUM - SCAN FILENAME FOR TOO MANY OR TOO FEW CHARACTERS
* FILENAME IS CHECKER ONLY (8 CHARACTERS MAX,
* I CHARACTER MINIMUM)
* RETURN O 0e IF NO ERROR
* = 0FFH IF ERROR *

SCANUM PUSH B
PUSH D
PUSH a
XCHG ;GET BUFFER COUNT
MOV C,M
MVI B,O ;E = OF CHARACTERS IN -N

9 2

RUN"

SCANUMI INX H
Mov A,M
CPI ;START COUNT AT :'?
JNZ SCANUM2 ; YES
DCR B ; NC, START AT BEGINNING
LCR C ;LONE YET?
JZ SCANUM4 ; YES
JMP SCANUMI ; NO

SCANUM2 0PI PERIOL ;GO TO PERIOL OR BUFFER ENE
JZ SCANUM4 ; PERIOL, ZONE
INR B ;KEEP COUNTING
rCR C
JZ SCANUM4 ;LONE
JMP SCANUMi ;LOOP

SCANUM4 XRA A ; < 1 CHARACTER?
CMP B
JZ SCANUM5 ; YES, ERROR
MvI A,E ; > 8 CHARACTERS?
CMP B
JO SCANUM5 ; YES, ERROR
XRA A ; NO ERRORS
JMP SCANUM5+2

SCANUM5 MVI A,OFFH ;ERROR
POP H
POP r
POP B
RET

SCANINV - SCAN FILENAME FOR NON-PRINTABLE CHARACTERS
RETURN A = 00 IF NONE FOUND

* = OFFH IF ANY FOUNI :

SCANINV PUSH B
PUSH D
PUSH H
XCHG ;GET BUFFER COUNT
MOv C,M

SCANINi INX
MOV A.,M
CPI 20H < < SPACE?
JC SCANIN2 ; YES, ERROR
DCR C ;ZONE WITH SCAN?
JNZ SCANINI ; NO
XRA A ; YES, NO ERRORS
JMP SCANIN2+2

SCANIN2 MVI A,0FFH ;ERROR
POP H
POP r
POP B
RET

93

MOVFN - MOVE FILENAME FROM CONSOLE BUFFER TO FCB

MOVFN CALL PURGFCB ;PURGE AND SET UP FCE
LXI H,CONBUFF+. ;GET BUFFER COUNT
MOV C,M
XCHG ;:E = CONBUFF POINTER
INX r
INX D ;SEE IF IT'S A COLON
LCR C
LEAX L
CPI
JZ MOVIT01 ; YES
DCX L ; NO
INR C
JMP MOVIT ;START AT BUFFER 3TART

MOVIT01 INX r ;START FROM COLON
DCR C

MOVIT LXI H,FCE+1
MOVITI LrAX D ;MOVE THE FILENAME

CPI PERIOD ; UNTIL PERIOD OR END
OF BUFFER

RZ ;DONE
MCV M,A ;STORE CHAR. IN FCB

I 11X rINX f

DCR C ;AT END OF BUFFER?
RZ ; rES, mOVE rONE
JMP MOVITi ; NO, LOOP

PURGFCB - PUPGE FILE CONTROL BLOCK (FCB) AND SET IT UP
*FOR ACCEPTING A FILENAME OF TYPE HEX *

PURGFCB LXI H,FCB
LXI D,FCBMSG
MVI C,16 ;SET UP FIRST 16 BYTES

PURG01 LDAX D
MOV M,A
DCR C ;16 BYTES LONE YET?
JZ PURGI ; YES
INX H
INX D
JMP PURG01 ; NO, LOOP

PURGI LXI r,FCB+32 ;INITIALIZE CURRENT RECORI
XRA A ; BYTE IN FCP
STAX D
RET

UCASE - CONVERT ALL FILENAME ALPHABETICS TO UPPER CASE *

UCASE MVI C,8 ;8 CH&RACTERS MAX
LXI H,FCB+I

94

UCASEOI MOV A,M
CPI 7BH ;IS IT > LOWERCASE z?
JNC UCASEl ; YES, OK
CPI a ; NO, IS IT < LOWERCASE a?
JC UCASEI ; YES, OK
ANI eLFH ;MUST BE LOWER CASE
MOV M,A ; CONVERT IT TO UPPER CASE

UCASE1 INX H
LCR C ;rONE?
RZ ; YES
JMP UCASEOl ; NO, LOOP

HEXBIN - CONVERT TWO REX ASCII CHARACTERS TO ONE EIGHT
*BIT BINARY NUMBER

- ALSO kLL IT TO CURRENT CHECKSUM IN B
CALL WITH HL POINTING TO FIRST CdARACTER

' RETURN BINARY NUMBER IN A '-

HEXBIN INX 3
MOV A,M ;GET FIRST DIGIT
CALL EOFCK ;END OF BUFFER/FILE?
CALL ASCHEX ;CONVERT TO PURE HEX
RLC ;MAKE IT 4 MSB'S
RLC
RLC
RLC
mOV EA ;SAVE IT
INX H ;GET SECOND DIGIT
MOV A,M
CALL EOFCK
CALL ASCHEX ;CONVERT IT
ALL F ;COMBINE THEM
MOV E,A ; SAVE IT
ALL B ;ALL TO CHECKSUM
MOV B,A ; SAVE IT
MOV AE ;GET BINARY NUMBER
RET

ASCHEX - CONVERT HEX ASCII rIGIT TO PURE REX LIGIT *

ASCHEX SuI 0 ;SUBTRACT OFF ASCII BIAS
CPI 10
RC ;NUMBER IS 0-9
SUI 7 ;NUMBER IS A-F
RET

* EOFCK - CHECK FOR END OF BUFFER/FILE

- IF ENE OF FILE THEN LOWNLOAL IS LONE
* - IF ENr Of BUFFER, REAL MORE LISK & RETURN WITH
*THE FIRST CHARACTER IN A

*- OTHERWISE, RETURN WITH NO ACTION

95

NICROPIOCESSOR DEVELOPMENT SYSTEM FOR THE ALTOS SERIES MICROC--ETC(U)

UNCLASSIFIED Nt

E2 uuuuuuuuuIIIu
EllllEEEllEEEI
EIIEEEEIIEEEI
IIIIEIIIEEEIIE

EOFCK CPI EOF
RNZ ;NOT END OF FILE/BUFFER
LLA CONTFLG ;SEE IF END OF FILE
RRC
JNC DWNLDNE ; YES
LXI H,DSKBUFF ; NO, READ MORE
CALL REArSK
LXI HDSKBUFF
MOV AM
RET

BINHEX - CONVERT AN EIGHT BIT BINARY NUMBER TO TWO HEX
* ASCII CHARACTERS

- STORE THE CHARACTERS IN MEMORY POINTER TO BY HL
- ADD BINARY NUMBER TO RUNNING CHECKSUM IN D

* CALL WITH BINARY NUMBER IN A ANI HL AS ABOVE *

BINHEX PUSH PSW ;SAVE DATA
ALL B ;ALL TO CHECKSUM
MOV B,A ; SAVE IT
POP PSW ;GET DATA
MOV E,A ; SAVE IT IN E
ANI OFOH ;PUT 4 MSB'S INTO LSB'S
RRC
RRC
RRC
RRC
CALL HEXASC ;CONVERT TO HEX ASCII
CALL BUFFCK ;STORE IT
MOV A,E ;GET DATA
ANI OFH ;NOW CONVERT LSB'S
CALL HEXASC
CALL BUFFCK ;STORE IT
RET

* HEXASC - CONVERT A BINARY NUMBER TO A HEX ASCII CHAR. *

HEXASC CPI OAH
JC NUMBER ;IT IS 0-9
ADI 7 ;IT IS A-F

NUMBER ALI 30H ;ALL ASCII BIAS
RET

* DISK I/O ROUTINES *
** ALL ERROR CODES RETURNED ARE IN ACCORDANCE WITH CP/M
* AND MP/M CONVENTIONS

READSK - READ THIRTY-TWO (32) 128 BYTE RECORDS FRO DISK
* SET FLAG TO INDICATE IF ONLY A PARTIAL REAL *

96

READSK PUSH B ;SAVE B
MVI B,32 ;BEAD 32 RECORDS MAX

REAESK1 CALL DMASET ;SET DMA AEDRESS
CALL REALREC ;READ A SINGLE RECORL
CPI 0 ;GOOD READ?
JZ REALMORE ; YES, DO IT AGAIN
GPI 1 ;EOF?
JZ READNE ; YES, DONE
MVI k,15 ; NO, READ ERROR

REALMORE DCR B ;4K WORTH YET?
JNZ READSK1 ; NO, READ MORE
MVI MEOF ; YES, STORE END OF BUFFER

; INDICATOR
MvI A,OFFH ;SET CONTINUATION FLAG
STA CONTFLG
POP B ;RESTORE B
RET

iEADNE IRA k ;RESET CONTINUATION FLAG
STA CONTFLG
PUSH B
LXI B,-128 ;POINT TO END OF LAST RECORD
DAL B
POP B
MVI MEOF ;ENSURE EOF MARKER IN BUFFER
POP B ;RESTORE ORIGINAL B
RET

*WRITErSK - WRITE A SINGLE 128 BYTE RECORD TO DISK

WRITEDSK LXI H,DSKBUFF ;POINT TO DISK BUFFER
CkLL LMASET ;SET DMA ADRESS
CALL WRITEREC ;WRITE RECORD TO DISK
COP 0 ;GOOD WRITE?
RZ ; YES, LONE
MVI A,18 ; NO, OUT OF DISK SPACE
CALL ERROR
CALL CLOSFILE ;CLOSE THE FILE BUT
CALL DELETE ; DON'T SAVE A PARTIAL FILE
JMP MENU

READREC - READ A SINGLE RECORD FROM DISK *

READAEC PUSH B
PUSH D
PUSH H
LXI D,FCB
MVI C,READF
CALL BOS
POP H
POP L

97

POP B
RET

* dRITEREC - WHITE A SINGLE RECORD TO DISK *

WRITEREC PUSH B
PUSH r
PUSH H
LXI ,FCB
MVI C,WRITEF
CALL BDOS
POP 3
POP D
POP B
RET

* LMASET - SET DMA ADDRESS
* CALL WITH ADDRESS IN HL
* RETURN WITH HL = HL + 128 *

LMASET PUSH PSW
PUSH B
PUSH r
PUSH H
XCHG ;DE DMA ADDRESS
MvI CSETrMA
CALL BDOS
POP a
LXI B1128 ;REArT tMA AtDRESS FOR NIXT
rAr B ; TIME
POP D
POP B
POP PSW
RET

* OPENFILE - OPEN A FILE CURRENTLY ON LOSK *

OPENFILE PUSH B
PUSH D
PUSH H
LXI L,FCB
MVI C,OPENF
CALL BrOS
POP 9
POP D
POP B
RET

* CLOSFILE - CLOSE A FILE CURRENTLY ON DISK *

CLOSFILE PUSH B

98

PUSH r
PUSH H
LXI ,FCB
MVI C,CLOSEF
CALL BDOS
POP H
POP r
POP B
RET

CREATE - CREATE A NEW FILE ON DISK *

CREATE PUSH B
PUSH D
PUSH H
LXI D,FCB
MVI C,MAKEF
CALL BrOS
POP H
POP r
POP B
RET

DELETE - DELETE A FILE CURRENTLY ON DISK *

DELETE PUSH B
PUSH D
PUSH H
LXI D,FCB
MvI C,DELF
CALL BrOS
POP H
POP D
POP B
RET

CURDSK - GET CURRENTLY LOGGED DISK *

CURDSK PUSH B
PUSH D
PUSH H
LXI r,FCB
MVl C,CURRNTL
CALL BDOS
POP H
POP r
POP B
RET

* ERROR - ERROR HANDLING ROUTINE

* CALL WITH ACC - ERROR NUMBER *

99

ERROR MOv C,A ;GET ERROR NUMBER
MvI B,O ;COMPUTE ERROR VECTOR
LXI 9,ERRJMP-3
LA r B
DAD B
LAL B
PCHL ;ERROR VECTOR IS IN PC
NOP
NOP

ERRJMP JMP ERRORi ;MENU SELECTION ERROR
JMP ERROR2 ;TOO MANY/FEW DELIMITERS
JMP ERROR3 ;PERIOL+ATA ERROR
JMP ERROR4 ;INVALIL REX DIGIT ERROR
JMP ERROR5 ;DELIMITER AT START/END
JMP ERROR6 ;2 OR MORE EL. SEQUENTIALLY
JMP ERROR? ;NO AMBIGUOUS FILES
JMP ERROR8 ;COLONS NOT PROPERLY PLACED

; IN FILENAME

JMP ERROR9 ;TOO MANY/FEW CHAR. IN FN
JmP ERROR10 ;FEX FILETYPE ONLY
JMP ERRORI1 ;NO SPACES IN FILENAME
iMP ERROR12 ;NO NON-PRINTABLE CHAR IN FN
JMP ERROR13 ;FILE NOT FOUND
JMP ERROR14 ;HEX CHECKSUM ERROR
JMP ERROR15 ;LISK READ ERROR
iMP ERROR16 ;OUT OF DIRECTORY SPACE
iMP ERRORi7 ;START > FINISH ADDRESS
iMP ERRORI8 ;OUT OF rIR/LISK SPACE

; PARTIAL FILE NOT SAVED

ERRORI LXI L,MENERRMG ;PRINT MENU ERROR MESSAGE
JMP ERROUT

ERROR2 LXI r,MFrELERR ;PRINT ERROR MESSAGE
JMP ERROUTI

ERROR3 LXI D,PERONLYM
JMP ERROUTI

ERROR4 LXI D,INVHEXER
iMP ERROUTI

ERROR5 LXI L,SEEELERR
JMP ERROUTI

ERROR6 LXI D,SEQDELER
JMP ERROUTI

ERROR? LXI D,AMBIGERR

100

JMP ERROUT2

ERROR8 LXI L,COLONERR
JMP ERROUT2

ERROR9 LXI D,FNCHARER
JMP ERROUT2

ERROR10 LXI D,HEXFTERR
JVP ERROUT2

ERROR11 LXI L,SPFNERR
JMP ERROUT2

ERROR12 LXI D,NPRTERR
JMP ERROUT2

ERROR13 LXI D,FNFNEERR
JMP ERROUTI

ERROR14 LXI L,CKSUERR
JMP ERROUTZ

ERROR15 LXI D,DSKRDERR
JMP ERROUT3

ERROR16 LXI D,LIRSPERR
JMP ERROUT

ERROR17 LXI r,SGFAERR
JMP ERROUTI

ERROR18 LXI D,DDSPCERR
JMP ERROUT3

ERROUT CALL PRINT ;PRINT ERROR
CALL DELAY ;LET USER READ ERROR
JMP MENU ;START OVER

ERROUTI LXI SP,STACK ;RE-INIT. STACK
CALL PRINT ;PRINT ERROR

CALL EELAY
LDA MENUFLG ;RECALL MENU CHOICE
JMP MENUl ;RESTART CURRENT OPTION

ERROUT2 CALL PRINT ;PRINT ERROR
CALL DELAY
RET ;BACK TO CALLER

ERROUT3 CALL PRINT ;PRINT ERROR
CALL DELAY

101

CALL HOSTEONE ;TELL MLS DONEi MENU

*DELAY - APPROX. 1-2 SECOND DELAY FOR USER TO SEE ERROR

MESSAGE BEFORE MENU IS REPRINTE*

LELAT PUSH PSW

PUSH B
PUSH r
PUSH H
MVI B,15 ;OUTER LOOP INITIALIZATION
LXI r,-1 ;rECREMENT BY SUBTRACTION

IELATIN LXI H,39EOH ;INNER LOOP INITIALIZATION
DELAYOUT DAD D ;HL = HL - 1

JC LELAYOUT
DCR B
JNZ DELAYIN
POP a
POP r
POP B
POP PSW
RET ;DELAY DONE, BACK TO CALLER

CRLF - CARRIAGE RETURN & LINE FEED UTILITY

CRLF MIl E,CR ;PRINT CARRIAGE RETURN
CALL CONSOUT
MVI E,LF ; THEN A LINE FEED
CALL CONSOUT
RET

ENTER - GET A SEX INTEGER FROM THE CONSOLE BUFFER
* & RETURN WITH HL = 16 BIT BINARY DATA

CALL WITH C = MAX NUMBER OF CHARACTERS TO INPUT
*LE = CONSOLE BUFFER POINTER FOR START OF
* CONVERSION PROCESS *

ENTER PUSH PSW ;SAVE A, BC, DE
PUSH B
PUSH D
LXI HOOOOH ;INIT. DATA AREA

ENTER1 LIAX I: ;GET DATA FOR CONVERSION
CPI 0A' ;IS IT 0-9?
JC ENTER15 ; YES
ANI oEFH ; NO - FORCE TO UPPER CASE

ENTER15 DAD H ;SHIFT PREVIOUS DATA LEFT
DAD H ;4 BITS
DAD E
DAD i
Jc ENTER3 ;IF OVERFLOW, PIUNT ERROR

102

CPI '0 ;IS IT 0-F?
Jc ENTER3 ; NO - ILLEGAL CHARACTER
CPI OF'+ ;IS IT > F?
JNC ENTER3 ; YES - ILLEGAL CHARACTER
CPI 'Ar ;LEGAL- IS IT A-F?
JC ENTER2 ; NO - IT'S 0-9
ALI 9 ;ALD CONVERSION FACTOR

ENTER2 ANI OFH ;ISOLATE 4 BITS
ORA L ;MERGE WITH PREVIOUS DATA
MOV L,A
DCR C ;COUNT CHARACTERS ENTERED
JZ ENTER4 ;EXIT IF C = 0
INX r ;BUMP BUFFER ADMRESS
JMP ENTER1 ;GET ANOTHER REX INTEGER

ENTER3 MVI A,4 ;PRINT ILLEGAL CHARACTER
; ERROR

JMP ERROR ;START OVER
ENTERI POP I ;RESTORE REGISTERS

POP B
POP PSW
RET

CONSIN - CONSOLE INPUT ROUTINE
DOESN'T RETURN UNTIL INPUT IS RECEIVED

CONSIN PUSH B ;SAVI REGISTERS
PUSH V
PUSH H
MVI CCONIN ;GET CHARACTER
CALL BLOS
POP 3 ;RESTORE REGISTERS
POP r
POP B
RET ;RETURN TO CALLER 'mITH

; CHARACTER IN A

CONSOUT - CONSOLE OUTPUT ROUTINE
ENTER WITH CHARACTER IN E *

CONSOUT PUSH PSW ;SAVE REGISTERS
PUSH B
PUSH D
PUSH H
MvI C,CONOUT ;OUTPUT CHARACTER
CALL BDOS
POP H ;RESTORE ALL REGISTERS
POP r
POP B
POP PSW
RET ;BACK TO CALLER

103

CONSTAT - GET CONSOLE INPUT STATUS
* RETURNS WITH A -OH IF NO CHARACTER WAITING
* = OFFH IF CHARACTER IS WAITING *

CCNSTAT PUSH B ;SAVE REGISTERS
PUSH D
PUSH H
MVI C,CONST ;GET STATUS
CALL BrOS
POP H ;RESTORE REGISTERS
POP r
POP B
RET

BUFFRL - REAL CONSOLE INPUT INTO BUFFER POINTED TO BY rE
RETURN WITH rE = BUFFER START ArLRESS + 1

*B = COUNT OF CHARACTERS INPUT
* ALL OTHER REGISTERS (A, HL) UNCHANGEL *

BUFFRr PUSH PSW ;SAVE A, HL
PUSH H

BUFFI LXI E,PROMPT ;SEND PROMPT TO CONSOLE
CALL PRINT
LXI ECONBUFF ;POINT TO CONSOLE BUFFER
PUSH D ; SAVE IT
MVI C,READCON ;READ CONSOLE INPUT
CALL BrOS
CALL CRLF
POP D ;POINT TO CHAR. COUNT
INX r
LLAX D ;GET COUNT
ORA A ;IS COUNT = 0?
JNZ REArONE ; NO, RETURN TO CALLER
JMP BUFFI ; YES, TRY AGAIN

READONE MOV B,A ;RETURN WITH B = COUNT
POP H ;RESTORE A, UL
POP PSW
RET

BUFFRL1 - REAL CONSOLE INPUT INTO BUFFER POINTEr TO BY LE
RETURN WITH LE = BUFFER START ADDRESS + 1

*B - COUNT OF CHARACTERS INPUT
A - 00 IF COUNT = 0

S- OFFH IF COUNT > 0
*' HL UNCHANGED *

BUFFRLI PUSH a ;SAVE HL
LXI D,CONBUFF ;POINT TO CONSOLE BUFFER
PUSH D ; SAVE IT
MVI C,REALCON ;REAL CONSOLE INPUT
CALL BrOS

104

CALL CRLF
POP r ;POINT TO CHAR. COUNT
INX r
LDAX D ;GET COUNT
ORA & ;IS COUNT = 0?
Jz REArONEl ; YES, RETURN TO CALLER
MOV B,A ;SAVE CHAR COUNT
MVI A,OFFH ;COUNT > 0
JMP REArONE1+l

READONEI MOV B,A ;RETURN WITH B = COUNT
POP H ;RESTORE A, HL
RET

SCAN - DELIMITER SCAN OF CONSOLE INPUT BUFFER
* (SPACES ANL COMMAS ARE LEGAL LELIMITERS)
* ALSO CHECKS FOR ESCAPE AND '?' KEYS
* CALL WITH DE = CONBUFF + 1
*A = NUMBER OF rELIMITERS TO LOOK FOR
* RETURN WITH CARRY SET IF MORE OR LESS DELIMITERS
*THAN SPECIFIED
* A = GARBAGE
* OTHER REGISTERS UNCHANGED *

SCAN PUSH B ;SAVE REGISTERS
PUSH D
PUSH H
MOT BA ;GET DELIMITER COUNT
XCHG ;HL = CONBUFF + 1
MOV C,M ;GET CHARACTER COUNT
CALL SCNENDEL ;SCAN FOR DELIMITERS AT

; START ANE ENE OF INPUT
CALL SCANDDEL ;SCAN FOR SE4UENTIAL DELS.

SCAN1 INX H ;GET CHARACTER
MOV AM
CPI SPACE ;IS IT A SPACE?
JZ CNTDEL ; YES, DEC DELIMITER COUNT
CPI COMMA ;IS IT & COMMA?
Jz CNTDEL ; YES
CPI ESC ;IS IT AN ESCAPE CHARACTER?
Jz SCANESC ; YES, ESCAPE FROM OPTION
CPI "?" ;IS IT A QUEST FOR HELP?
JZ QUESTION ; YES, PRINT DATA FORMATS

SCAN2 rCR C ;NONE OF THESE, CHECK NEXT
; CHARACTER

Jz SCANLONE ;NO MORE CHARACTERS TO CHECK .
JMP SCAN1

CNTLEL DCR B ;LECREMENT DELIMITER COUNT
JMP SCAN2 ;LOOK FOR ANOTHER DELIMITER

SCANLONE XRA A ;SEE IF B = 0
CMP B

SCAND1 POP H ;RESTORE REGISTERS

105

NINE!=

POP r
POP B
RET

SCANESC LLA MENUFLG ;IF HOST COMMANE THEN
CPI NHSTCML ; NO ESCAPE TO MrS
JC MENU
LDA SYSSTAT :SEE IF HOST IN CONTROL
ORA A
JZ SCNESC1 ;HOST IN CONTROL
CALL CNTRLCK ;MLS Ir IN CONTROL
RRC
JNC MENU ; NO ABORT

SCNESCI MVI &A, ; ABORT
CALL MLSCmL
IRA A ;CLEAR SYSSTAT FL G, HOST
STA SYSSTAT ; NOW IN CONTROL
JMP MENU ;RETURN TO MENU

QUESTION LXI D,FORMTMSG ;PRINT DATA FORMATS ANL
CALL PRINT ; RETURN TO CURRENT OPTION

QUEST1 CALL CONSTAT ;WAIT FOR RESPONSE TO
RRC ; CONTINUE
JNC QUESTI
CALL CONSIN
LXI r,FMTMSG1 ;CONTINUE FORMAT MESSAGE
CALL PRINT

QUEST2 CALL CONSTAT
RRC
JNC QUEST2
CALL CONSIN
LLA MENUFLG
JMP MENU1 ;BACK TO OPTION

CNTRLCK LXI D,ABORTMSG ; MDS IS - PRINT ABORT QUERY
CALL PRINT

CNTRLI CALL CONSTAT ;WAIT FOR RESPONSE
RRC
JNC CNTRL1
CALL CONSIN ;GET RESPONSE
ORI 20H ;FORCE IT TO LOWER CASE

0 I
CPI y" ;ABORT MDS CONTROL?
JZ CNTRL2 ; YES
IRA A ; NO, CLEAR A
RET

CNTRL2 MVI A,0FFH ; SET A
RET

SCNENDEL - CHECK FOR DELIMITERS AT FIRST & LAST CHARACTER
POSITIONS IN CONSOLE INPUT BUFFER

CALL 4ITH BUFFER COUNT IN C *

106

hobo

SCNENDEL PUSH B ;SAVE BUFFER COUNT
INX H ;GET FIRST CHARACTER
MOV AM
CPI SPACE ;IS IT A SPACE?
JZ SCNSPCI ; YES, ERROR
CPI COMMA ;Is IT A COMMA?
JNZ SCNSPC2 ; NC, CONTINUE TO END

SCNSPCI MVI A,5 ;ERROR
JMP ERROR

SCNSPC2 rCR C ;AT BUFFER ENE YET?
JZ SCNSPC3 ; YES
INX I ; NO
iMp SCNSPC2 ; LOOP

SCNSPC3 MOV A,M ;GET LAST CHARACTER
CP1 SPACE ;A SPACE?
JZ SCNSPC1 ; YES, ERROR
CPI COMMA ;A COMMA?
JZ SCNSPCI ; YES, ERROR
POP B ;RESTORE BUFFER COUNT
LXI H,CONBUFF+l ; AND POINTER TO IT
RET

SCANIEL - SCAN CONSOLE BUFFER FOR 2 OR MORE SEQUENTIAL
*DELIMITERS

SCANtIEL PUSH B ;SAVE BUFFER COUNT
XRA A ;INIT. FIRST LELIMITER FLAG
STA FRSTDEL

SrELI INX H ;GET CHARACTER
MOV A,M
CPI SPACE ;SPACE?
JZ DELCK ; YES, FIRST LELIMITER?
CPI COMMA ;COMMA?
JZ DELCK ; YES, FIRST rELIMITER?
rCR C ;IF C = 0 THEN LONE
JZ SEELrNE
XRA A ;RESET FLAG
STA FRSTrEL
JMP SEELI ;LOOP

DELCK LDA FRSTDEL ;FIRST DELIMITER?
ORA A
JNZ BELCKI ; NO, A=l - ERROR
INR A ; YES, SET FRSTDEL FLAG

STA FRSTIEL
BCR C ;SEE IF DONE
JZ SDELDNE
JMP SEELl ; NO, LOOP

LELCKI XRA A
STA FRSTDEL
MVI &,6
JMP ERROR ;PRINT ERROR

107

SDELDNE POP B ;RESTORE BUFFER COUNT
LXI H,CONBUFF+I ; AND POINTER TO IT
RET

CKPERIOD - CHECK FOR A PERIOD ANYWHERE IN INPUT
CALL WITH rE = CONBUFF + 1
RETURN WITH A = 00 IF NO PERIOD FOUND

*= OFFE IF A PERIOD ONLY
* = 0FOH IF A PERIOD + DATA
* OTHER REGISTERS UNCHANGED *

CKPERIOD PUSH B ;SAVE REGISTERS
PUSH r
PUSH H
XCHG ;HL = CONBUFF + 1
MOV CM ;C = CHARACTER COUNT
MOV DM ;E= CHAR. COUNT ALSO

CKPER1 INX H ;GET CHARACTER
mOV A,M
CPI PERIOD ;IS IT A PERIOD?
JZ PERFND ; YES
LCR C ; NO, ANT MORE CHARACTERS?
JZ CKDONE ; NO, CHECK LONE
JMP CKPER1 ; YES, TRY AGAIN

PERFN MOV AL ;RECALL ORIG. CHAR. COUNT
CPI 1 ;ONLY A PERIOL?
JZ NOERR ; YES, NO ERRCR
MVI A,OFOH ; PERIOD + DATA IS ILLEGAL
JMP CKrONE+l

NOERR MVI A,OFFH ;PERIOD ONLY INDICATION
JMP CKLONE+1

CKDONE XRA A ;CLEAR ACC., NOT FOUND
POP H ;RESTORE REGISTERS
POP D
POP B
RET

GET4BIN - GET 4 OR LESS HEX INTEGERS FROM THE cONSOLE
*BUFFER AND CONVERT THEM INTO 16 BIT -:NARY DATA
*(GO INTO BUFFER, GC TO DELIMITER IF ONE EXISTS
*OR TO BUFFER END, iHICHEVER OCCURS FIRST;
*BACK UP NUMBER OF CHARACTERS SPECIFIED BY
*CALLER OR TO DELIMITER OR BUFFER+1, CONVERT
*TO BINARY ANr RETURN)

CALL WITH DE = START OF CONVERSION POINTER (AT A
*DELIMITER OR THE BUFFER COUNT)

RETURN WITH B = NUMBER OF CHARACTERS LEFT IN BUFFER
*C = NUMBER OF CHARACTERS CONVERTED

*DE = END OF BUFFER OR DELIMITER
* HL = 16 BIT BINARY DATA *

108

Vi

"ET43BIN MVI C,4 ;GET 4 CHARACTERS MAX
MOV -,C ;BE SURE B&CKUPI INST IS
STA BACKUP1+1 ; MVI A,4

GET41 XCHG ;HL = START OF SEARCH
GET4LOOP INK H ;GET CHARACTER

MOV A,M
CPI SPACE ;IS IT A SPACE?
JZ BACKUP ; YES
CPI COMMA ;is IT A COMMA?
JZ BACKUP ; YES
LCR B ;MORE CHARACTERS IN lUFFER?
JZ BACKUPO ; NO
JMP GET4LOOP ;NONE OF THESE, TRY AGAIN

BACKUPO INX H ;POINT TO BUFFER ENr + 1
BACKUP PUSH H ;SAVE rELIMITER ADDRESS

DCX H ;BACK UP 1
CALL BUFFTST ;AT BEGINNING OF BUFFER?
JZ BACKUP01 NO
MOV A,M
CPI SPACE ;ARE WE AT A SPACE?
Jz BACKUPOl ; YES
CPI COMMA ;ARE WE AT A COMMA?
JZ BACKUPOI ; YES
BCR C ;LECREMENT CHARACTER COUNT
JNZ BACKUP+1 ;BACK UP 1 AGAIN
JMP BACKUP1 ;C = 0 FINALLY

BACKUP01 INK H ;POINT TO FIRST CHARACTER
BACKUPI MVI A,4 ;FINALLY GOT THERE

SUB C ;COMPUTE NUMBER OF BACKUPS
MOV C,A
XCHG ;DZ = CONVERSION START ADLR
CALL ENTER ;tO CONVERSION
POP D M = rELIMITER ArrRESS
DCR B ;DECREMENT CHAR. COUNT
RET

BUFFTST PUSH H
PUSH D
LXI L,CONBUFF+l
MOV A,L ;AT BUFFER+l YET?
CMP E ;IF Z = I THEN AT BUFFER l
POP r
POP H
RET ; ELSE Z = 0

GET2BIN - SAME AS GET4BIN BUT LIMITEL TO TWO CHARACTERS
*MAX

SAME ENTRY PARAMETERS
RETURNS 4ITH L = 8 BIT BINARY EATA

* OTHER REGISTERS AS IN GET4BIN *

109

GET2BIN MVI C,2
MOV A,C ;TWO BACK-UP'S ONLY
STA BACKUPI+1 ; MODIFY GET4BIN COLE
CALL GET41
MlVI A,4 ;RESTORE GETZBIN COLE
STA BACKUP1+1
RET

MDSOUT - HOST OUTPUT TO MDS
* CALL WITH CHARACTER IN A *

MDSOUT PUSH B ;SAVE REGISTERS
PUSH D
PUSH H
MOV C,A ;SAVE CHARACTER

MrSOUT1 MVI A,10H ;RESET SIO INT BIT
OUT MSTATPT
IN MSTATPT ;GET SO STATUS&INI OCH ;CHECK FOR BOTH DTR & TXE
CPI OCH ; MUST HAVE BOTH

JNZ MDSOUT1 ;LOOP TILL READY
MOV A,C
OUT MDATAPT ;SEND CHARACTER
CPI XON ;IF XON, DON'T WAIT FOR
JZ XONDN ; CONFIRMATION

XONCK CALL MDSTAT ;NOW WAIT FOR CONFIRMATION
RRC
JNC XONCK ; FROM MLS
IN MDATAPT ;GET IT TO RESET SIO FLAGS

XONDN POP H ;RESTORE REGISTERS
POP r
POP B
RET

MrSCM£ - SEND COMMANL TO MES
CALL WITH A = COMMAND *

MDSCMD PUSH PSW ;SAVE COMMAND
MVI A,055H ;NEXT CHAR. WILL BE CML
CALL MDSOUT
POP PSW ;SEND COMMAND
CALL MDSOUT
RET

MDATAOUT - SEND USABLE DATA TO MDS
CALL WITH A = DATA *

MDATAOUT PUSH PEW ;SAVE DATA
MVI A,o7yH ;NEXT CHAR. 4ILL BE DATA
CALL MDSOUT
POP PSW ;SEND DATA

110

PUSH PSW ; SAVE IT
CALL MLSOUT
POP PSW ;RESTORE DATA
RET

* HOSTRLT - HOST READY TO RECEIVE RETURN DATA FOR CURRENT
* OPTION *

HOSTRDY MVI A,00H ;NEXT CHAR. IS RDY FLAG
CALL MtSOUT
MYI A,OOH ;SEND READY FLAG
CALL MDSOUT
RET

HOSTEONE - HOST DONE WITH ITS PART IN CURRENT OPTION,
*IS RETURNING TO MONITOR *

HOSTDONE MVI A,'Q" ;NEXT CHAR. IS DONE CMNL
CALL MDSCMD
RET

* MDSIN - HOST INPUT FROM MrS
RETURNS WITH CHARACTER IN A, OTHER REGISTERS RESTORED *

MISIN PUSH E ;SAVE REGISTERS
PUSH D
PUSH H
CALL MLSINRIY ;ANY INPUT WAITING FROM MLS?
IN MDATAPT ; YES, GET DATA TYPE
CPI OFFH ;IS IT DATA?
JZ MLSIN2 ; YES, GET IT
CPI 055H ;QUIT CMD?
JZ MLSQUIT ; YES
JMP MESINLNE ; NO, MDS MUST HAVE

SIGNALLED IT'S READY
FOR INPUT

MrSQUIT MVI A,XON ;CONFIRM RECEIPT
CALL MDSOUT
CALL MtSINRL!
IN MDATAPT
XRA A ;RESET FLAGS
STA SYSSTAT
STA MLSRLTF
MVI A,XON ;CONFIRM RECEIPT OF ''
CALL MrSOUT
JMP MENU ;NO4 BACK TO MENU

MDSIN2 MVI A,XON ;SEND CONFIRMATION
CALL MDSOUT
CALL MrSINRET ;WAIT FOR DATA
IN MDATAPT ; THEN GET IT
PUSH PSW ; SAVE IT

11.1 I!
j

MVI A,XON ; CONFIRM AGAIN
CALL MDSOUT
POP PSW ;RESTORE LATA & REGISTERS
POP H
POP D
POP B
RET

MDSINRDT - CHECK FOR INPUT FROM MDS, LOOP TILL THERE IS *

MESINRtY CALL ESCK ;CHECK FOR ESCAPE
CALL MDSTAT ;GET STATUS
RRC
JNC MESINRLY ;NO CHARACTER WAITING, LOOP
RET ;CHARACTER WAITING

MESINENE - SET MES READY FOR INPUT FLAG *

MLSINDNE MVI A,XON ;CONFIRM IT
CALL MESOUT
CALL MrSINREY
IN MDATAPT
MVI A,0FFH ;SET MIS REALY FLAG
STA MDSREYF
MVI A,XON ;CONFIRM RECEIPT CF DATA
CALL MrSOUT
POP H ;RESTORE REGISTERS
POP D
POP B
RET ;BACK TO MrSIN CALLER

ESCK - CHECK FOR ESCAPE COMMAND FROM KEYBOARD
* IGNORE ALL OTHER INPUT *

ESCK C&LL CONSTAT ;CHECK FOR INPUT
RRC
RNC ; NONE
CALL CONSIN ;IS IT ESCAPE?
CPI ESC ;IS IT ESCAPE?
JZ ESCKO ; N0
MVI E,BKSPCE ;LON'T PRINT CHARACTER
CALL CONSOUT
RET

ESCK01 LEA SYSSTAT ;GET SYSTEM STATUS
ORA A
JZ ESCKl ;HOST IN CONTROL
CALL CNTRLCK ;SEE WHO IS IN CONTROL
RRC
JNC MENU ; NO ABORT

ESCK1 Mvi A,' °Q ; YES, SEND ESCAPE Cl-L
CALL MDSCMD ; TO MDS

112

XR& A ;HOST NOW IN CONTROL
STA SYSSTAT
iMp MENU ;NO BACK TO MENU

" MLSTAT - GET STATUS OF MrS SIO
" RETURNS WITH A = 00 AND Z = I IF NO CHARACTER WAITING
*= OFFY AND Z = 0 IF CHARACTER WAITING -

MESTAT XRA A ;CHECK SIO STATUS
OUT MSTATPT
IN MSTATPT
ANI 1 ;CHARACTER WAITING?
RZ ; NO, RETURN 4ITH A = 0
MVI LOFFH ;YES, RETURN WITH A =FFH
RET

* CNVT16 - CONVERT 16 BITS BINARY DATA TO REX ASCII
C CALL WITH RL = ALLRESS FOR 4 CHAR-CITER ASCII OUTPUT

*STRING
* BC = 16 BIT BINARY DATA

RETURNS REGISTER PAIRS UNCHANGED
A = GARBAGE

CNVT16 PUSH a ;SAVE REGISTERS
PUSH r
PUSH B
INX El
INX H
INX H
MVI D,4 ;CHARACTER COUNTER

CNVT161 MOV AC ;NEXT 4 BITS
ANI FH
CPI OAH ;IS IT A-F?
JC CNVTI615 ; NO
AEI 7 ; YES

CN7T1615 ADI "e' ;FORM ASCII
MOV 1,,A ;STORE THIS CHARACTER
DCX H ;BACK UP THROUGH OUTPUT AREA
MVI E,4 ;DOUBLE RIGHT
ORA A ;SHIFT RIGHT 4 BITS

CNVT162 MOV A,B
RAR
MOl BA
MOV A,C
RAR
MOV C,A
LCR E ;DECREMENT SHIFT COUNTER
JNZ CNVT162 ;STILL SHIFTING
ECR L ;rECREMENT CHARACTER COUNTER
JNZ CNVT161 ;STILL CONVERTING

113

- ' .. . - "
"

:L.I . f

POP B ;RESTORE REGISTERS
POP r
POP H
RET

CNVT8 - CONVERT 8 BITS BINARY rATA TO HEX ASCII
* CALL WITH HL = ADLRESS FOR 2 CHARACTER ASCII OUTPUT
*STRING

C = 8 BIT BINARY DATA
RETURNS REGISTER PAIRS UNCHANGED

A = GARBAGE *

CNVT8 PUSH H ;SAVE REGISTERS
PUSH D
PUSH B
INX H
MVI D,2
JMP CNVT161 ;DO CONVERSION

STAR - PRINT A STAR *

STAR PUSH D
LXI t,STARMSG ;PRINT IT
CALL PRINT
POP D
RET ;BACK TO CALLER

*** MISCELLANEOUS MESSAGE AND DATA STORAGE AREAS

SIGNON LB CR,LF,'ALTOS MES CONTROL PROGRAM'
DB ' - VERSION 1.5',CR,LF,LF,'$'

INSTRUC LB CR,LF,'BASIC AMDS INSTRUCTIONS:',CR,LF,LF
DB A4 TRE PROMPT FOR INPUT OF LATA IS'DB~ ~ >. ,CR,LF
LB ' B. ALL INPUTS MAY BE IN UPPER OR lower'
LB ' CASE.',CR,LF
DB ' C. ADDRESS AND DATA INPUTS ARE EXPECTED"
LB " TO BE IN HEX NOTATION.',CR,LF
LB L D. TERMINATE INPUTS WITH A CARRIAGE "
DB 'RETURN OR LINE FEED.',CR,LF
EB ' E. NORMAL LINE ELITING ON INPUT IS IS
LB 'IN CP/M AND MP/M.',CRLF
DB " F. FOR ADDRESS INPUTS, THE PROGRAM
LB 'WILL ALWAYS TAKE THE LAST FOUR OR LESS "
LB CR,LF,' HEX CHARACTERS ENTEREr; FOR "
DB 'DATA INPUTS, THE LAST TWO OR LESS.',CR,LF
LB ' G. SOURCES OF COMMON ERROR ARE INVALIE'
LB ' HEX DIGITS, TOO MANY OR TOO FEW',CR,LF
DB " DELIMITERS, AND ILLEGAL SYNTAX.',CR.LF

114

LB ' H. IN GENERAL, THE SAmE DATA I/O FORMAT'
rB ' AS USED IN DIGITAL RESEARCH"'S',CR,LF
LB 0 rET IS USED HERE. FOR EXCEPTIONS,'
LB CONSULT THE USER 'S MANUAL.',CR,LF
DB ' I. A QUESTION MARK ENTERED AFTER THE
LB 'PROMPT WILL CAUSE THE INPUT FORMATS TO'
LB CR,LF
D? ' BE DISPLAYED.',CR,LF
LB ' J. IF THE ESCAPE KEY IS ENTERED LURING
EB 'INPUT THEN THE USER IS RETURNEt',CR,LF
DB ' TC THE MENU.',CR,LF
LB " K. FOR FURTHER DETAILS, CONSULT THE
LB 'USER'S MANUAL',CR,LF,LF
rB 'PRESS ANY KEY TO CONTINUE >W"

MENUMSG LB CRLF,'
DB d MENU',CR,LF
LB " HOST COMMANDS
LB " MES COMMANES',CRLF,LF
DB 'A. SUPPRESS PRINTING MENU
LB 'G. DOWNLOAD HEX FILE - I1SK TO MrS -

EB AMEMOR',CR.LF
DB 'B. DO NOT SUPPRESS PRINTING MENU
LB 'H. UPLOAD MES MEMORY TO HEX LISK FILE'
LB CR,LF
DB 'C. BASIC INSTRUCTIONS

lB 'I. EXAMINE/SET mrS MEMORY LOCATION(S)'
LB CR,LF
DB 'D. HEXADECIMAL ADD & SUBTRACT
lB "J. CONTINUOUS SET OF MES MEMORY',CR,LF
LB AE. RETURN SYSTEM CONTROL TO HOST "
DB Kl. FILL MDS MEMORY WITH SPECIFIED BYTE'
LB CR,LF
LB "F. RETURN TO CP/M
DB 'L. LOCATE BYTE SEQUENCE IN MDS MEMORY'
LB CR,LF
L B "

DB 'M. DUMP MDS MEMORY LOCATION(S) TO CONSOLE'
LB CR,LF
LB
DB 'N. EXECUTE MLS MEMORY FROM SPECIFIEL',CR,LF
L B "
LB A LOCATION',CR,LF,'"

SYSMSG DB 'SYSTEM STATUS: $$$$ IN CONTROL;'
LB $$ MENU SUPPRESSION',CR,LF,'$'

MrSMSG DB 'MrS $
HOSTMSG DB 'HOST$"
NOMENMSG LB NO
YESMENMG rB
MENERRMG DB CR,LF,'INVALID MENU SELECTION',CR,LF,'$'
MFrELERR LB CR,LF,'TOO MANY OR TOO FEW DELIMITERS IN'

115

-. ~~ - i -

LB 'INPUT',CR,LF,'

PERONLYM DB CR,LF,'PERIOD ONLY PLEASE !',CR,LF,'$'
INVHEXER LB CR,LF,'INVALIE HEX rIGIT',CR,LF,'$'
SEDELERR ZB CF,LF,'CAN''T HAVE A DELIMITEF AT START OR'

LB ' END OF INPUT',CR,LF,'
SEQrELER EB CR,LF,'TWO OR MORE DELIMITERS SEQUENTIALLY'

DB CR,LF,''
&MBIGERR LB CR,LF,'AMlIGUOUS FILENAMES NOT ALLOWED'

LB CR LF , V,
CCLONERR DS CRLF,'COLON (:) NOT PROPERLY PLACED IN-

LE 'FILENAME -,CR,LF,'$'
iNCHARER LB CR,LF,'FILENAME TOO LONG CR TOO SHORT'

LB CR.LF,'(8 CHARS MAX, I CHAR MIN)',CR,LF,l
HEXFTERR LB CR,LF,'HEX FILETYPES ONLY !*,CRLF,l'
SPFNERR LB CR,LF, NO SPACES ALLOWED IN FILENAME'

DB CRLF,'l'
NPRTERR LB CR,LF,'NON-PRINTABLE CHARACTERS NOT

LB I'ALLOWEr IN FILENAME',CR LF '$'
FNFNDERR DB CR,L?,'FILE NOT FOUND',Ci,Li,''
CKSUMERR LB CR,LF,'HEX CHECKSUM ERROR',CR,LF,
DSKRLERR LB CR,LF,'DISK REAL ERROR' ,CR,LF. '
DIRSPERE DB CR,LF,'OUT OF DIRECTORY SPACE',CR,LF,'$'
SGFAERR LB CR,LF,'START ArDRESS CANNOT BE GREATER

LB 'THAN FINISH ALLRESS',CR,LF,'
DLSPCERR DB CRLF,'OIT OF DIRECTORY OR DISK STORAGE-

L:B 'SPACE',CRLF,' PARTIAL FILE WAS NOT
LB 'SAVED 'CF

LRIV3RR D3 CR,LF, WARNING - ONLY CURRENTLY SELECTED
L;B 'DISK WILL BE USED, INPUT IGNORED I'
LB CR,LF,'$'

CNTRLMSG LB CR,LF,'MDS IS IN CONTROL, CAN''T CONTINUE'
LB ' UNTIL OPTION "'E" IS SELECTEr' CR,LF,'$'

ABORTMSG LB CR,LF,'ABORT MDS CONTROL (YIN)? $'
ABORTEDM LB CR,LF,'MDS CONTROL ABORTED, aOST IN-

LB 'CONTROL.',CR,LF,'$'
EXMSG LB CR,LF,'WILL CONSOLE BE RECEIVING DATA

LB ' FOR DISPLAY FROM THE MDS (Y/N)?$'
EXMSG2 rB CR,LF,LF

LB - MDS IS IN CONTROL, HOST MAY REGAIN
DB 'CONTROL ONLY BY TYPING THE ESCAPE KEY I
LB CR,LF,LF,*$'

FORMTMSG LB CRLF,' INPUT PARAMETER FORMATS ARE AS
DB ' FOLLOWS : ',CR,LF
LB I MENU>Xl
LB 'X IS OPTION SELECTION (A-N)',CR,LF
LB ' HEXARITE MIXX YYYY
LB 0 XXXX & YYYY ARE HEX INTEGERS',CR,LF
LB A rWNLOAD NFILENAME(.}iEX)
LB '(.HEX) IS OPTIONAL',CR,LF

Lp UPLOAD >FILENAME(.HEX)'.CR.LF
LB A XXX YYYY

116

DB XXXX & YYYY ARE MDS HEX START AND ',CRLF
rB '

D3 " END ADDRESSES FOR UPLOAD',CR,LF
LB " EXAMiNE MrS >XXXX

LE " XXXX IS FIRST MrS HEX ADDRESS TO'
DB CR,LF,"
LB " EXAMINE ANr SET,CR,LF
LB 4 >XXXX YT ZZ
DB " XXXX IS HEX ADDRESS, YY IS HEX DATA'
LB CR,LF,'
LB " AT THAT ADDRESS, ZZ IS CARRIAGE RETURN-
DB CRLF, "

LB " or ZZ 13 NEW HEX DATA"
LB CR,LF,"
DB or ZZ 1 "'.'",CR,LF
LB " CONTINUOUS >XXXX
LB XXXX IS MrS HEX START ALLRESS FOR'
DB CR,LF,'
LB FIRST CHANGE',CR,LF
rB " >AA BB CC "
LB " ARE HEX DATA FOR ENTRY INTO MDS MEMORY'
LB CRLF, '
LB 1 (255 ENTRIES MAX, INCLUDING DELIMITERS)"
DB CR,LF
L B "
LB " IF ONLY A ".' IS TYPED AFTER THE'
DB CR,LF, '
LB PROMPT, TEE OPTION IS ENE,CR,LF
LB FILL >XXXX YYYY ZZ
DB XXXX & YYYY ARE MDS HEX START AND'
LB CR,LF,'"
LB " EiD AIDRESSES TO FILL BETWEEN;',CR.LF
DB A

LB ' ZZ I5 HEX DkTA TO USE FOR FILL',CR,LF
LB CR,LF,'PRESS ANY KEY TO CONTINUE >$"

FMTMSGI DB CR,LF,LF
LB A LOCATE SEQ. >XXXX(YYYY)
LB " XXXX & TYTY ARE MES HEX START ANr',CR,LF
D B "
LB ' OPTIONAL END ADDRESSES TO SEARCH BETWEEN'
tB CR,LF
DB " >AA BB ... PP 0

LB " ARE UP TO A 16 BYTE HEX SEQUENCE',CR,LF
B "

LB " TO SEARCH FOR IN MrS MEMORT',CR,LF
LB " DUMP >XXXX(YYYY)

DB & XXXX & TTYT ARE MDS HEX START AND'
DB CR,LF,'
LB I OPTIONAL END ADDRESSES TO DUMP BETWEEN'
NB CR,LF
DB ' EXECUTE >XXXX

117

LB *XXXX IS MrS HEX krrRESS WHRERE EXECUTION'
DB CR,LF
LB 0v
LB I IS TO BE%-fIN',CR,LF,LF
DB 'PRESS ANY KEY TO CONTINUE W$

HEXIISG LB CR,LWHEX Alr/SUB',CR,LF,'$'
HEXMSGI LB sum = 4$$$
HEXMSG2 DB 'LIFF $$$$',CR,LF,l
EX&MSG LB CRsLF,'EXAMINE/SET MrS MEMOR,R,LF,'$'
EXAMSG1 LB
EXAMSG2 LB '$

FILLMSG LB CR ILF,'FILL MLS MEMORY LCC.UrION(S)',CR,LF
DB p

CSETMSG LB CR,LF,'CONTINUOUS SET Mrs MEMORY WI0
LB .0EXAMINE',CR,LF, '

EXECMSG LB CR,LF,'EXECUTE MES MEMORY FROM SPECIFIEr
LB 'ADDRESS-,CR,LF,l'

LOCVSG LB CR,LF , LOCATE BYTE SEQUENCE IN MLS MEMORY'
LB CR,LFJV$

NOTFOUND LB CR,LF,'BYTE SEQUENCE NOT FOUNr !',CR,LFJV'
FOUNrMSG rB CR,LF, 'FOUNC STARTING AT mrS ALrRES3
FOUNLMS1 LB
LUMPMSG LB CRLF,'LUMP MDS MEMORY,CR,LF,l'
LUMPMSG1 LB '$$$~$'
LUMPMSG2 LB ' $

LUMPMSG3 LB I O M M
MENUPROI LB CRLF,'OPTION A = MENU SUPPRESSION, =

LB .0NO MENU SUPPRESSION'
MENUPROM DB CR,LF,'INPUT MENU OPTION
PROMPT LB O
FILENAME LB 'FILENAME $'
DWNLDMSQ DB CR,LF,'DOWNLOAr HEX FILE FROtm1 DISK TO nPs'

LB I MEMORT',CR,LF,'
LWNLONE LB CR,LF,'EOWNLOAD COMPLETEr',CR,LF
DWNDONE1 DB 'MUS START ADDRESS = $ $f, LAST ADDRESS

L;B *-= M$$H',CR,LF, $'
UPLLMSG LB CRLF,'UPLOAD (SAVE) MLS MEMORY TO DISK-

DB 'HEX FILE',CR,LF,.'$'
UPLLONE LB CR,LF , UPLOAD T~O LISK SUCCESSFULLY

DB COMPLETEB',CR,LF,'$'
DATAMSG LB -$
STARMSG LB
FCBMSG LB 0,20H,20H,20H,202,20H,20H,20H,20E

LB 'HEX ',o,o 'o '

SYSSTAT LS 1 ;SYSTEM STATUS FLAG
HOST INJ CONTRCL 0
MLS IN CONTROL = 1

MENUSUPF LS 1 ;MENU SUPPRESSION FLA7,
;0 = NO SUPPRESSION

118

1 = SUPPRESSION
MENUFLG ES 1 ;STORAGE FOR MENU CHOICE
FRSTLEL LB 0 ;FIRST DELIMITER FLAG
FIRST DW ;FIRST NUMBER TO ADD/SUB
SECONr EW 0 "SECOND NUMBER TO Arr/SUn
SUM V'. 0 ;SUM OF HEX NUMBERS
START DW 0 ;STARTING ADDRESS FOR

• COMMANE USE
FINISH LW 0 ;FINISH ADDRESS FOR

; COMMANE USE
MESLATA ES 1 ;TEMP. STORAGE FOR rATA

; FROM MES
CONSDATA DS 1 ;TEMP. STORAGE FOR DATA

; FROM CONSOLE TO MES
MLSRLYF rS 1 ;MLS REALY FLAG

; OFFH = DONE, 0 = NCT DONE
FIRSTIME ES 1 ;FIRST TIME THROUGH REAt
BUFFCNT ES 1 ;BUFFER COUNT SPACE
CURRENT DS 1 ;CURRENT DISK DRIVE
CONTFLG ES 1 ;CONTINUATION FLAG FOR riSK

REAL OPERATIONS
00 = NC CONTINUE

; OFFH = CONTINUE
FCB VS 36 ;SPACE FOR FILE CONTROL

; BLOCK
CONBUFF LB 48 ;EEFAULT TO 48 CHARACTERS

; MAX FOR CONSOLE BUFFER
DS 256 ;PROVIDE FOR 255 CHARACTERS

LSKBUFF EQU $;START OF rISK BUFFER

ENE STARTER

APPENrIX r

MDS MONITOR SOFTWARE LISTING

AMES1 - ALTOS MICROCOMPUTER LEVELOPMENT SYSTEM -

*(MES COLE)

" VERSION 1.3, 28 MAY 1981 *
" LT. STEPHEN M. HUGHES - AUTHOR A

* THIS IS THE MrS MONITOR COLE FOR THE AMDS. THE AMIS
USER'S MANUAL SHOULL BE CONSULTEL FOR SPECIFICS NOT
GIVEN IN THE DOCUMENTATION WHICH FOLLOiS.

RAM EQU 2000H ;START OF ONBOARD RAM
CHASTAT EQU 0E4H ;CHANNEL A STATUS ANL

; COMMANL/CONTROL PORT
CHADATA EQU 0E3H ;CHANNEL A DATA PORT
CHBSTAT EqU 0E2H ;CHANNEL B STATUS ANt

; COMMANr/CONTAOL PORT
CHBDATA EQU OEIH ;CHANNEL 3 DATA PORT

; (NOT USED IN THIS COLE)
BAULREG EQU OEOH ;PORT FOR SETTING PAUL RATE2

; OF SERIAL PORTS
XON EQU 011H ;CONTROL Q

ORG @OOOH ;START OF PROM
JMP PORTSET ;SET UP SERIAL PORT ON RESET
NOP
NOP

USERIO JMP USRIO ;USER CALL FOR CON3OLE I/O

ORG 0038H ;RST 7 LOCATION
JMP EXECENE ;USER RST 7 COMES HERE FOR

RETURN OF CONTROL TO HOST
AND ONBOARD MONITOR

ORG 0040H ;RST 7 + 8
MONITOR LXI SP,STACK ;SET STACK EVERY TIMlE

120

XRA A
STA OPTION ;RESET OPTION FLAG
CALL HCSTIN ;!ET COMMANE FRCM HOST

MONITORI ANI 7FH ;OMMANr WILL EE ASCII
CPI W ;DOWNLCAL COMMAND?
JZ DWNLD
CPI 'U ;UPLOAl COMMANE?
JZ UPLr
CPI "X" ;EXAMINE/SET MEMORY Ci?
JZ EXAM
CPI "C ;CONTINUOUS MEMORY SET CVL?
JZ CS:T
CPI "F' ;FILL COMMAND?
JZ FILL
CPI 'L' ;LOCATE SEQ. COMMAND?
JZ LOCATE
CPI "D" ;rUMP MEMORY COMMAND?
JZ DUMPCPI "E ;EXECUTE MEtAORY CMI?

JZ EXEC
JMP MONITOR ;ANYTHING ELSE IS IGNOREE

*W NLD - rOiNLOAL HEX DISK FILE TO MrS MEMORY ROUTINE

ROUTINE LOOPS UNTIL A HOSTLONE COMMAND IS
DETECTED BY THE INPUT ROUTINE *

LWNLr CALL HOSTIN ;GET NUMEER OF BYrvS TO
; EXPECT

MOV C,A ;C = BYTE COUNTER
CALL GETALER ;GET STARTING ADDRESS

LWNLDI CALL HOSTIN ;GET A BYTE
MOV M,A ;STORE IT
INX a
LCR C
JNZ DNLD1 ;MORE 3YTES TO GET
JMP rWNLL ;GET NEW ADDRESS FIRST

UPLD - UPLOAD MrS MEMORY TO DISK HEX FILE :

UPLD CALL GETLELR ;GET STARTING ADDRESS
SHLr START
CALL GETADDR ;GET FINISH ADDRESS
SHLL FINISH
LHLD START
XCHG ;DE = START ADDRESS

UPLrl LLAX r ;GET DATA
CALL HDATAOUT ;SEND IT
INX D
CALL BUFFCMP ;DONE YET?
RRC
JNC UPLDI ; NO

121

CALL MtSRDY ; YES
JMP MONITOR

EXAM - EXAMINE/SET MEt'iORY
LOOPS TILL INPUT DETECTS HOSTLONE COMMAND *

EXAM CALL GETALDR ;GET STARTING AD]RESS
EXAMI MOV A,M ;SEND DATA AT RL ArDRESS

; TO HOST
CALL .rATAOUT
CALL HOSTIN ;GET NEW DATA
MONv M,A ; LEPOSIT IT
INX H
JMP EXAM1 ;LOOP TILL HCSTDONS

CSET - CONTINUOUS SET OF MtS MEMORY
LOOPS TILL iOSTEONE LETECTEL *

CSET CALL GETADDR ;GET STAfkTING ADDRESS
CSETI CALL HOSTIN ;GET EkTv

MOV MA ; DEPOSIT IT
imp CSETI ;LOOP

FILL - FILL DESIGNATED MEMORY LOCATIONS WITH SPECIFIED
DATA

FILL CALL GETADDR ;GET FIRST ADDRESS
SHLE START
CALL GETArDR ;GET LAST ALEhESS
SHLD FINISH
CALL HOSTIN ;GET LkTA TO FILL WITH
mNO CA ; SAVE IT
LHLD START
XCHG ;LE = START kErRESS

FILLI MON AC ;GET FILL DATA
STAX D DEPOSIT IT
INX r
CALL BUFFCMP ;ZONE YET?
RRC
JNC FILL1 ; NO, KEEP FILLING
CALL MLSLONE ; YES
JMP MONITOR

LOCATE - LOCATE BYTE SEQUENCE IN MtS MEMORY
* SENDS 'F' TO HOST IF FOUNL
* SENDS 'N' TO HOST IF NOT ?OUND "

LOCATE CALL GETADER ;"ET START ADDRESS
SHLE START
CALL GETALD ;GIT FINISH ArDRESS
SHLL FINISH

122

LXI H,rATABUFF ;STORE SEQUENCE HERE
MVI C,0 ;DATA COUNTER

LOCIN CALL HOSTIN ;%^ET SEQUENCE
PUSH PSW
LDA HSTRDYFL ;IF SET THEN NO MORE DATA
RRC
JC SEARCH ; START SEARCH
POP PSW ;MORE DATA
MOv M,.A ;STORE IT
INX H
INR C ;BUMP COUNTER
JMP LOCIN

SEARCH MOV A,C ;GET SEQUENCE COUNT
STA LOCOUNT ;SAVE IT
LELr START
XCHG ;LE = START ArLRESS
LXI H,DATABUFF ;HL = START OF SEQUENCE

SRCHI LEAX r ;GET MrS rATA
CMP M ; IS THERE A MATCH?
JZ MATCH ; YES
INX r
CALL BUFFCMP ; NO, SEE IF LONE
RRC
JC NOTFNL ;YES, SEQ. NOT FOUND
JMP SRCH1 ;NO, TRY AGAIN

MATCH XCHG ;HL = FIRST MATCH ADIRESS
SHLL MATCHALR ; SAVE IT
XCHG ;RESTORE LE & HL

MATCHI DCR C ;ALL MATCHES YET?
JZ FOUNr ; YES, FoUNt SEQUENZE
INX D
CALL BUFFCMP ;rONE YET?
RRC
JC NOTFNr ; TES, SEQ. NOT FOUNr
INX H ; NO, LOOK FOR NEXT Y:ATCH
LLAX r
CMP M ;ANOTHER MATCH?
JZ MATCH1 ; YES
LHLL rATABUFF ; NO, START ALL OVER
INX r
LDA LOCOUNT ;RE-INIT. SEC. COUNT
MOV CA
JMP SRCH1 ;KEEP TRYING

FOUND MVI A,'F" ;SEID FOUND TO HOST
CALL H£ATAOUT
LHLD MATCHALR ;GET FIRST ALER. OF MATCH
MOv A,H ; SEND IT TO HOST, MSB FIRST
CALL HrATAOUT
MOV A,L ; THEN LSB
CALL HDATAOUT
JMP MONITOR ;ALL LONE

123

"-woo

NOTFNL MVI A,'" ;SENt NOT FOUNI TO HOST
CALL HDATAOUT
JMP MONITOR

* LUMP - LUMP MLS MEMORY TO HOST CONSOLE *

LUMP CALL GETALLR GET START AZERESS
SHLL START
CALL GETADDR ;GET FINISH ADDRESS
SHLL FINISH
LHLD START
XCHG ;LE = START ADDRESS

LUMPI LLAX r ;GET MLS !,EMORY tATA
CALL HLATAOUT
INX D
CALL BUFFCMP ;LONE YET?
RRC
JNC DUMP1 ; NO
CALL MLSR£Y ; YES
JMP MONITOR

EXEC - EXECUTE MDS MEMORY

* PROGRAM TO BE EXECUTEL wAY RETURN MONITOR VIlk
• A 'RST 7' INSTRUCTION OR A JUMP TO LOCATION
* 0000H
• HOST CONSOLE 1/0 IS AVAILABLE AS EXPLAINEr iN
• THE USRIO ROUTINE *

EXEC STA OPTION ;SAVE OPTION
CALL GETALER ;GET EXECUTION ADDRESS
PCHL ; GO TO IT

UTILITY SUBROUTINES **

* BUFFCMP - COMPARE LE TO FINISH ArtRESS + I
• IF EQUAL, RETURN A = OFFE

• IF UNEQUAL, RETURN A = 00 *

BUFFCMP PUSH H
PUSH D ;DE=CUBRENT ADDR TO COMPARE
LHLL FINISH ;EL = FINISH ALLRESS * I
INX H
MOv A,H ;H D?
CMP L

JNZ NOCMP ; NO
MOv A,L ; YES, L = E?
CMP E
JNZ NOCMP ; NO
MVl A,0FFH ; YES, ADDRESSES ARE EQUAL
POP I

1 24

POP El
RE°,-

NOCMP XRA A ;ADDRESSES NOT EQUAL
POP r
POP 3
RET

GETArDR - GET ADDRESS FROM HOST *

GETADDR CALL HOSTIN :GET MSB FIRST
MOV H,A
CALL HOSTIN ; ThEN LSB
MOV L,A
RET

PORTSET - SET UP SERIAL I/O PORTS ON EVERY RESET OR
*CALL TO 00009 *

PORTSET MVI &,?7H ;SET RATE TO 9600 BAUL
OUT BAUDREG
MVI A,01001110B ;SEND CONTROL BYTE

; 1 STOP BIT
OUT CHASTAT ; NO PARITY, E BITS/CHAR
OUT CEBSTAT ; 16x RATE FACTOR
MVI A,00110111B ;SENL COMMAND BYTE
OUT CHASTAT
OUT CHBSTAT
JMP MONITOR

USRIO - USER TO/FROM HOST CONSOLE 1/0 ROUTINE
*USER EXECUTEr PROGRAMS IN MES MEMORY MAY
* COMMUNICATE WITH THE HOST CONSOLE VIA A CALL
*TO LOCATION 0005H

- FOR INPUT FROM THE HOST CONSOLE, CALL WITH
REG. C = 1 - CHARACTER WILL BE RETURNED IN A

* - FOR OUTPUT TO '-OST CONSOLE, CALL 4ITH THE
*CHARACTER IN A ANL REG. C = 2

- TO CHECK THE FOR HOST INPUT, CALL WITH
*REG. C = 3 - RETURNS A = 00 IF NO INPUT HAS BEEN
* RECEIVEL FROM THE HOST; A = OFFE IF INFUT IS

WAITING
* - IF C 0 1, 2 or 3 THEN ROUTINE RETURNS iITH C =FFB

USRIO PUSH PSW
MOV A,C ;SEE IF INPUT OR OUTPUT
CPI 1
JZ USPIN
CPI 2
JZ USROUT
CPI 3 ;WANT STATUS ?
CZ HOSTAT ; YES, GET IT

125

MvI C,OFFH ;ILLEGAL COIE
RET

USRIN CALL MDSRDY ;TELL HOST TO SEND INPUT
POP PSW
CALL HOSTIN ;GET INPUT
RET ;RETURN WITH IT IN A

USROUT POP PSW
CALL HtATAOUT ;SENr CdARACTER TO HOST
RET

* EXECDNE - THIS RETURNS USER PROGRAM TO MONITOR AND
* RETURNS CONTROL TO HOST IF A RST 7 13 EXECUTEL *

EXECLNE LrA OPTION ;SEE IF THE EXECUTE OPTION
CPI "E" ; iAS IN EFFECT WHEN CONTROL

WAS TRANSFERRED HERE
JNZ MONITOR ; NO, HOST IN CONTROL
CALL MLSrONE ; YES, GIVE HOST CONTROL
JMP MONITOR

HOSTIN - GET INPUT FROM HOST & INTERPRET TYPE OF INPUT *

HOSTIN CALL GETCHAR ;GET INPUT
HOSTINI CPI 55H ;IS IT A COMMAND?

JZ HOSTCMr
CPI OFFH ;is IT rATA?
JZ HOSTDTA
JMP HOSTRLY ; UST BE HOST READY FLAG

HOSTCMD CALL 'ETCHAR ;GET ACTUAL COMMANr
JMP MONITORI ; GO TO MONITOR ?OR DECODE

HOSTDTA CALL ,ETCHAR ;GET rATA
RET ; RETURN TO CALLER WITH IT

HOSTRDY CALL GETCHAR ;GET READY FLAP
MVI A,OFFH ; SET FLAG IN MES
STA HSTRDYFL
RET ;RETURN TO CALLER

GETCHAR CALL HOSTAT ;LOOP TILL CHAR. IS WAITiNG
RRC
JNC GETCHAR

GETCHAR1 IN CHALATA ;GET DATA
PUSH PSW
MVI A,XON
CALL HOSTOUT ;CONFIRM IT
POP PSI
RET

* HOSTOUT - SEND DATA TO HOST *

HOSTOUT PUSH PSW
CALL HOSTAT ;ANYTHING FROM HOST? (HOST

126

RRC ; HAS PRIORITY)
JNC HOSTOUTI ; NO
CALL 2ETCHAR1 ; YES, GET IT
CALL HOSTINI ;IF COMMAND, BACK TO MONITOR

; ELSE IGNORE IT
HCSTOUTI IN CHASTAT ;GET PORT STATUS

ANt I
JZ HOSTOUTI ; LOOP TILL READY TO SEND
POP PSW ;SEND CHARACTER
OUT CHADATA
CPI ION ;rON'T WAIT FOR XON
RZ ; CONFIRMATION

IONCK CALL HOSTAT ;WAIT FOR CONFIRMATION
RRC
JNC XONCK
IN CHADATA ;GET IT
RET

HOSTAT - HOST INPUT STATUS *

HOSTAT IN CHASTAT
ANI 2
RZ ;NO CHAR. WAITING, RET A=O
mvi A,0FFH ;CHAR. WAITING, RET A=eFFH
RET

HDATAOUT - SEND DATA TO HOST IN PROPER FORMAT *

HLATAOUT PUSH PSW ;SAVE DATA
MVI A,OFFH ;NEXT CHARACTER IS DATA
CALL HOSTOUT
POP PSW
PUSH PSW

CALL HOSTOUT ;SEND DATA
POP PSW ;RESTORE DATARET

MDSDONE - SEND MDS DONE COMMAND *

MESLONE MVI k,55D ;NEXT CHARACTER IS COMMAND
CALL HOSTOUT
MVI A, 'Q" ; QUIT COMMAND
CALL HOSTOUT
RET

MDSRDT - MDS IS READY FOR INPUT OR OTHER ACTION BY HOST *

MDSRDT MVI A,0OH ;NEXT CHAR. IS READY FLAG
CALL HOSTOUT
MVI A,00H
CALL HOSTOUT

127

RE T

rATA STORAGE AREAS - IN ONBO&RL RAr *

ORG RAM
HSTRLYFL rS 1 ;HOST READY FLAG

00 = NOT REArY
OFFE = RZADY

MATCHALR LW 0 ;STORAGE FOR FIRST kttRESS
; OF MATCH

LOCOUNT DS 1 ;STORAGE FOR BYTE COUNT
START 0d 0 ;STORAGE FOR START &
FINISH LW 0 ; FINISH ArDRESSES
OPTION DS I ;STORAGE FOR OPTION SELEClt

rS 63 ;ALLOW FOR A 32 LEVEL STACK
STACK DS 1
DATABUFF DS 25 ;STORAGE FOR LOCATE SEQUENCE

128

APPENDIX E

MDS MEMORY TEST PROGRAM LISTING

* MDS MEMORY DIAGNOSTIC

VERSION 2.5 ii MAY 1981

* THIS PROGRAM IS A REVISION CF THE Z-80 MEMORY TEST *
PROGRAM PUBLISHER IN THE FEBRUARY 1981 ISSUE OF *

*"DR. LOBB'S JOURNAL OF COMPUTER CALISTHENICS & CRTHODCNTIA" *
THE PROGRAM HAS BEEN TRANSLATED TO 8080 ASSEMBLY CODE RND
MODIFIED TO OPERATE ON THE ALTOS ANE MES SYSTEMS. -

REVISIONS MADE BY LT. STEPHEN M. HUGiES FOR USE IN THESIS *

* AS STATED IN THE ORIGINAL TEXT, "FURTHER RESKLi OF THIS
PROGRAM IS PROHIBITED", UNLESS INCLUDED IN THE BODY OF THE
REVISIONIST'S THESIS. *

ORG 4000H

USRIO EQU 0005H ;USER I/O CALL
BKSPACE EQU 08H ;ASCII BACKSPACE
ESC EQU 1BH ;ASCII ESCAPE CODE
CR EQU otH ;ASCII CARRIAGE RFTURN
LF EQU OAH ;ASCII LINE FEED

RCNT EQU 3 ;SEQUENTIAL REArS
WONT EQU 3 ;SEQUENTIAL WRITES

MEM DI ;DISABLE INTERRUPTS
LXI SP,STACK ;INITIALIZE STACK
LXI B,TEND ;FORMAT ADDRESS OF ENE OF TEST
LXI H,MEMTI
CALL CHA

TEST STARTS HERE *

MEM01 CALL CRLF ;MAKE OUTPUT PRETTY
LXI H,OOOOH ;INITIALIZE PAS COUNT,

; CUMULATIVE ERROR COUNT

129

AND ADDRESS 'OR' PROLUCT
SHLD MEMF
S ELl MEMX
SELI MEML
LXI E,-I ;INIT. ADDRESS 'AND'
SHLL MEMK
LXI H,MEMA ;PRINT PROGRAM TITLE
CALL DSPLY

GET TEST MOLE *

MEM03 MVI A,l ;SET DEFAULT = ITEMIZE
STA MEMP
LXI H,MEMN
CALL ESPLY ;PRINT SELECT I,T OR E
CALL CRLF
MVI A,'>' ;PROVILE A CUE MARK
CALL USROUT
CALL USRIN ;WAIT FOR INPUT
ORI 20H ;MAKE LOWER CASE
CPI "e ;IF E, EXIT
JZ MEM55
CPI 'i" ;IF I, ITEMIZE ERRORS
JZ MEM04
CPI "t" ;IF T, PRINT TOTAL ERROR3

; ONLY
JNZ MEM03 ;IF NONE, TRY AGAIN
XRA A ;SET TOTAL ONLY FLAG
STA MEMP

GET MEMORY TEST LIMITS *

MEM04 LXI E,MEMB ;PRINT ENTER FBA
CALL DSPLY
CALL ENTR ;GET 16 BIT ArLRESS
MOV A,H ;IF UPPER BYTE OF FBA IS
ORA A ; NEGATIVE, OK TO USE
JM MEMO5 ; SO JUMP
LXI D,TEND ; OTHERWISE, MAKE SURE FBA
PUSH H ; IS NOT WITHIN TEST PROGRAM

; AREA
MOv A,L ; (EL = HL - 1N - C)
SUB E
MOV L,A
mOv A,H
S3B r
MOV H,A
POP 9
JP MEMO5 ;FBA IS OK, JUMP

MEM045 LXI H,MEMT ;IF FBA IS WITHIN TEST PROGRAM
CALL DSPLY ; AREA, SET IT TO END OF

1.%o

LXI H,TENL ; PROGRAM & PRINT A WARNING
MEMO5 SHLD MEMI ;SAVE FIRST BYTE AEtRESS (FBA)

LXI H,MEMC ;PRINT ENTEH LAST BYTE ADDRESS
; (LBA)

CALL DSPLY
CALL ENTR ;...ACCEPT ADDRESS
PUSH H ;SAVE LBA
PUSH H
ORA A ;CLEAR CARRY FLAG
PUSH Hi ; (LE = CONTENTS OF MEMI

AND MEMI + 1)
LHLr MEMI
MOV D,H
MOV E,L
POP H
MOV A,L ;MAKE SURE FBA < LBA
SUB E ; (HL = L - DE - C)
MOV LA
MOY AH
SBB D
MOV H,A
JNC MEMO6 ;IT'S OK, JUMP
POP H ;RESTORE STACK
POP a
LXI i,MEMU ;FBA IS >= LBA SO PRINT
CALL DSPLY ; ERROR MESSAGE
JMP MEM04 ; AN ACCEPT ArDRESSES AGAIN

ALL ADDRESSES OK NOW *

MEMP6 POP B ;BC = LBA
LXI H,MEMG+5 ;CONVERT IT FOR PRINTING
CALL CHA
PUSH H ;CONVERT FBA FOR PRINTING
LHLD MEMI ; (BC = CONTENTS OF MEMI

AND MEMI + 1)
MOV B ,
MOV C,L
POP H
LXI E,MEMG
CALL CHA
POP H ;ML = LBA
PUSH H

MEMOS LXI H,MEMV ;PRINT ABORT INSTRUCTION
CALL DSPLY
POP L ;LE = LBA
INX r ;LBA = LEA + 1

" MAIN LOOP OF MEMORY TEST BEGINS HERE *

" BEGIN A PASS *

131

MEMI MVI C,1 ;INITIALIZE PATTERN NO.
LXI 3,OOOOH ;INITIALIZE ERROR COUNT
SHLD MEME

TEST ALL OF DESIGNATED MEMORY FOR CURRENT PATTERN

WRITE PATTERN INTO MEMORY *

MEM15 MVI B,WCNT ;INIT. WRITES COUNTER
MEM2 LHLD MEMI ;GET FIRST BYTE ALERESS 0 TEST

CALL USRSTAT ;CHECK KEY3OARD
RRC
CC MEM5 ;IF CHARACTER WAITING,

; INTERRUPT TEST
PUSH B ;SAVE PATTERN AND WRITES

; COUNTER
MEM21 CALL PATTN ;COMPUTE PATTERN FOR THIS

; MEMORY ADDRESS
MOV M,A ; ...WRITE IT
INX H ;ADVANCE MEMORY ADDRESS
MOV A,L ;CHECK IF END OF AREA 'O BE
CMP E ; TESTED
JNZ MEM21 ;LOOP, NOT YET
MOV A,H
CMP D
JNZ MEM21 ;LOOP, NOT rONE YET
POP B ;GET WRITES COUNTER
rCR B ;WRITE PATTERN OVER AND OVER
JNZ MEM2
MVI B,RCNT ;INIT. READS COUNTER

" NOW READ PATTERN BACK FROM MEMORY AND COMPARE TO COMPUTER
" PATTERN. IF DIFFERENCE IS FOUND ON FIRST READ, ASSUME A
" POSSIBLE WRITE ERROR. IF FIRST READ MATCHES, COMPARE 16
* MORE TIMES LOOKING FOR SOFT READ ERRORS. *

MEM3 LHLD MEMI ;GET FBA OF MEMORY TO TEST
CALL USRSTAT ;CHECK KEYBOARD
ORA A ;IF CHARACTER WAITING,
CNZ MEM5 ; INTERRUPT TEST
PUSH B ;SkVE PATTERN AND READS

; COUNTER
MEM31 CALL PATTN ;COMPUTE PATTERN FCR THIS

; MEMORY ADDRESS
MOV BA ;...SAVE IT
MOV A,M ;READ MEMORY
CMP B ;is RATA CORRECT?
JZ MEM32 ; YES, JUMP
MOv M,B ;WRITE THE CORRECT DATA

132

CALL ERR1 ;DATA DOESN'T MATCH,
PRINT POSSIBLE WRITE
ERROR AUDIT

JMP MEM35 ;TEST NEXT ADDRESS
DATA MATCHED ON FIRST TRY
TRY FOR A SOFT READ ERROR

MEM32 SUB M ; BY HITTING THIS A]2DRESS A
ADD M ; SOLID 16 TIMES
SUB M
ADD M
SUB M
ADD M
SUB M
ADD M
SUB M
ADD M
SUB M
ADD M
SUB M
ADD M
SUB M
ADD M
CMP B ;DOES DATA STILL MATCH?
CNZ ERR2 ; NO, PRINT POSSIBLE READ

; ERROR AUDIT
MEM35 INX H ;ADVANCE MEMORY ADDRESS

MOV A,L ;CHECK IF REACHED E'J OF tIEVORY
CM. E ; AREA TO BE TESTED
JNZ MEM31 ;NOT DONE YET, LOOP
MOV A,H
CMP r
JNZ MEM31 ;NOT DONE YET, LOOP
POP B ;RESTORE PATTERN AND READ

; COUNTER
DCR B ;READ PATTERN OVER AND OVER
JNZ MEM3

* LONE WITH ONE PATTERN, ADVANCE TO NEXT AND CHECK FOR END
* OF PASS *

INR C ;INCREMENT PATTERN
MOv AC
CPI 11 ;LONE YET?
JNZ MEM15 ; NO, LOOP
JMP MEM6 ;AUDIT THIS PASS

CHARACTER WAITING ON KEYBOARD, INTERRUPT TEST ANI. CHECK
FOR EXIT REQUEST *

133

MEM5 CALL USRIN ;GET INPUT
CPI 04H D - FREEZE ACTION
JZ DISPSTP
ORI 20H ;FOLr TO LOWER CASE
CPI ;rYNAMIC SET ITEMIZE
JZ MAKEI
CPI Vt" ;LYNAMIC SET TOTAL ONLY
JZ MAKET
CPI "e
JNZ STACKIT ;RESTART TEST IF NOT E

MEM55 LXI HMEMM ;EXIT FROM TEST, PRINT GOODBYE
CALL DSPLY

LISPSTP CALL USRIN ;WAIT FOR ANY KEY TO RESU ,E
ACTION

CALL BSOUT ;DON'T PRINT IT
RET

STACKIT LXI SP,STACK ;RESET STACK
JMP MEM0I ;RESTART TEST

MAKEI MVI All ;MAKE ITEMIZE
STA MEMP
CALL BSOUT
RET

MAKET MJI A,O ;MAKE TOTAL ONLY
STA MEMP
CALL BSOUT
RET

* LONE WITH PASS THROUGH MEMORY

PRINT CONSOLE AUDIT IN THE FORM:

PASS: xxxx ERRORS: xxxx CUM. ERRORS: xxxx
* (IF CUMULATIVE ERRORS > ZERO THEN ALSO PRINT)
* AND: xxxx OR: xxxx

MEM6 PUSH D ;SAVE LBA 1
PUSH H ; (BC = CONTENTS OF MEMF

AND MEMF + 1)
LHLD MEMF
MOV B,H
MOV C,L
POP H
INX B ;COUNT PASSES
PUSH H ; (MOV BC TO MEMF)
MOV HB
MOV L,C

134

SHLL MEMF
POP H
LXI 3,rMEMGI ;CONVERT PASS COUNT
CALL CHA
PUSH H (BC = CONTENTS OF MEME

ANE MEME + 1)
LHLB MEME
MOV B,H
MOV C,L
POP H
LXI H,MEMG2 ;CONVERT ERROR COUNT
CALL CHA
PUSH H ; (BC = CONTENTS OF MEMX

AND MEMX + 1)
LHLI: MEMX
MOV B,h
MOV C,L
POP H
LfLD MEME
DAD B ;ACCUMULATE ERRORS FCR

; ALL PASSES
SHLD MEMX
PUSH H ;FORMAT CUMULATIVE EPRORS
POP B
LXI H ,MEMG23
CALL CHA
MVI A,CR ;SET UP OUTPUT TO SKIP 'AND'

; & 'OR' OF FAILING MEMORY
; ADDRESSES IF NO ERRORS HAVE
; BEEN FOUND

STA MEMG25
LHLD MEMX
MOV A,H ;MAKE SURE NO ERRORS
ORA L
JZ MEM67 ;NONE YET, JUMP
MVI A," " ;REMOVE THE CAhRIAGE RETURN

; FROM THE OUTPUT STRING
STA MEMG25
PUSH H ; (BC = CONTENTS OF MEMK

AND MEMK + 1)
LHLD MEMK
MOV B,H
MOV C,L
POP H
LXI H,MEMG3 ;CONVERT LOGICAL 'AND' OF

; FAILING ADDRESSES
CALL CHA
PUSH H ; (BC = CONTENTS OF MEML

AML MEML + 1)
LHLD MEML
MOV B,i

135

................... .

MOV C,L
POP H
LXI a,MEMG4 ;CONVERT LOGICAL 'OR' OF

; FAILING ADDRESSES
CALL CHA

MEM67 LXI H,MEMG ;PRINT PASS kUDtT
CALL DSPLY
LDA MEMJ ;ROTATE BIT CROSSTALK SC THAT
RLC ; OVER EIGHT PASSES ALL lIT
STA MEMJ ; PATTERNS WILL BE USED
POP D ;RESTORE LBA+l
JMP MEn. ;START ANOTHER PASS

" ERROR AUDITING ROUTINE
" CONSOLE OUTPUT OF THE FORM:

Amxxxx P=xx C-xx XOR=xx ERROR-TYPE

A = FAILING ADDRESS
P = CALCULATED PATTERN
C - ACTUAL CONTENTS OF ADDRESS
XOR = EXCLUSIVE OR OF PATTERN AND CONTE.'TS

*(ISOLATES FAILING BIT(S))
ERROR-TYPE = RD PRESUMED READ (SOFT) ERROR

* WT PRESUMED WRITE (HARD) ERROR

ERR1 PUSH PSW ;POSSIBLE WRITZ ERROR
MVI A, "
STA MEME5
MVI A,"T"
STA MEME5+1
POP PSW
JMP ERROR

ERR2 PUSH PSW ;POSSIBLE READ ERRORMVI A,'R"

STA MEMD5

STA MEM5+1
POP PSW

ERROR PUSH B ;SAVE ALL REGISTERS LURING
; ERROR AUDIT

PUSH D
PUSH H
PUSH PSW
XRA B ;LOGICAL EXCLUSIVE 'OR' OF

; CALCULATED PATTERN AND
; ACTUAL MEMORY CONTENTS

MOV C,A

136

LXI H,MEML4 ;CONVERT 'OR' FOR OUTPUT
CALL CRAB
POP PSW ;GET MEMORY CONTENTS ANT

; CONVERT IT FOR OUTPUT
MOv CA
LXI H,MEM3
CALL CRAB
MOV C,B ;CONVERT PATTERN
LXI H,MEME2
CALL CRAB
POP B ;CONVERT CURRENT MEMORY ALDRESS
PUSH B
LXI H,MEMt1
CALL CHA
LHLE MEME
INX H ;COUNT ERRORS THIS PASS
SHLD MEME
POP r ;GET CURRENT MEMORY ADDRESS
PUSH r
LHLD MEMK
MOv &,Y ;SAVE LOGICAL 'ANr' OF

FAILING ALDRESSES
ANA H
MOV H,A
MOV A,E
ANA L
MOV L,A
SHLE MEMK
LHLD MEML
MOV A,r ;SAVE LOGICAL 'OR" OF

FAILING ADLRESSES
ORA H
MOV H,A
MOV A,E
ORA L
MOV L,A
SHLL MEML
LDA MEMP ;CHECK ITEMIZE ERRORS FLAG
ORA A
JZ ERR9 ;SKIP PRINT IF FLAG = i
LXI H,MEMD ;PRINT ERROR AUDIT
CALL DSPLY

ERR9 POP H ;RESTORE REGISTERS AND
POP D ; RETURN TO MAIN TEST
POP B
RET

COMPUTE TEST DATA PATTERN FOR GIVEN MEMORY ADDRESS

CALL WITH HL = MEMORY ADDRESS

137

SC = PATTERN COUNTER

RETURN A = DATA PATTERN

PATTN PUSH E ;PATTERN COMPUTATION
MVI B,O ;BRANCH ON PATTERN
LXI H,PATTO-3
DAD B
DAI B
DAD B
ITHL ;(RESTORE MEM ArDR)
NOP
RET ; (BRANCH)

PATTO JMP PATI ;1 CAMBRIDGE PATTERN
JMP PAT2 ;2 ADDRESS
JMP PAT3 ;3 ALTERNATE I'S AND O'S
JMP PAT4 ;4 ADDRESS INVERSE
JMP PAT5 ;5 ALTERNATES O'S ANr 1'S
JMP PAT6 ;6 ALL ONES
JMP PAT7 ;7 CAMBRIDGE INVERSE
JMP PAT8 ;8 ALL ZEROS
JMP PAT9 ;9 BIT CROSSTALK
JMP PATIO ;I BIT CROSSTALK INVERSE

PAT1 MOV A,L ;CAMBRIDGE PATTERN
RRC
RRC
RRC
XRA H
ANI 1
JZ ONES

ZEROS XRA A
RET

ONES MVI A,OFFH
RET

PAT2 MOV A,L ;ADDRESS
RET

PAT3 MvI A,OAAH ;ALTERNATE I'S AND C'S
RET

PAT4 MOV A,L ;ADDRESS INVERSE
CMA
RET

PAT5 MVI A,55H ;ALTERNATE 0'S AND I'S
RET

PAT6 EQU ONES ;ALL BITS = ONE

138

PAT7 MOV A,L ;CAMBRIrGE INVERSE
RRC
RRC
RRC
IRA H
ANI I
JZ ZEROS
JMP ONES

PAT8 EQU ZEROS ;ALL BITS = ZERO

PkT9 MOV A,L ;BIT CROSSTALK
RAR
JC PAT9I
LrA MEMJ
RET

PAT91 LEA MEMJ
CMA
RET

PAT10 MOV &,L ;BIT CROSSTALK INVERSE
RAR
JNC PAT91
LEA MEMJ
RET

* BINARY TO HEX ASCII CONVERSION, 16 BITS

* CALL HL = ArLRESS FOR 4 CHAR ASCII OUTPUT STRING
* BC = 16 BIT BINARY DATA

RETURNS HL,DE,BC UNCHANGED
* a -- GARBAGE *

CHA PUSH d ;SAVE REGISTERS
PUSH D
PUSH B
INX H
INI H
INI H
MvI D,4 ;CHAR COUNTER

CHAI MOv A,C ;NEXT 4 BITS
ANI OFH
CPI OAH ;IS IT A-F?
Jc CHA15 ;NO
ALI 7 ;YES

CHA15 ALI "0" ;FORM ASCII
MOv M,A ;STORE THIS CHARACTER
ECX H ;BACK UP THROUGH OUTPUT AREA
MVI E,4 ;EOUBLE RIGHT

139

ORA A ;SHIFT 4 BITS
CHA2 MOV A,B

RAR
MOV B,A
MOV AC
RAR
MOV C,A
ECR g ;LECREMENT SHIFT COUNTER
JNZ CHA2 ;STILL SHIFTING
DCR D ;DECREMENT CHARACTER COUNTER
JNZ CHAl ;STILL CONVERTING
POP B ;RESTORE REGISTERS
POP D ; AND EXIT
POP H
RET

* BINARY TO HEX ASCII CONVERSION, 8 BITS *

* CALL HL = ArIlRESS FOR 2 CHARACTER OUTPUT STRING
* C = 8 BIT BINARY DATA

* RETURN HL,LE,BC UNCHANGED
A DESTROYED *

CHAB PUSH H ;SAVE REGISTERS
PUSH D
PUSH B
INX H
MvI D,2
JMP CHAl

* PRINT CHARACTER STRING *
*

* CALL HL = FIRST BYTE ADDRESS OF OUTPUT STRING
* (MUST ENL VITH ASCII CARRIAGE RETURN) *

DSPLY CALL CRLF
LSPLY1 MOV AM

CALL USROUT ;OUTPUT THIS CHARACTER
CPI CE ;END OF STRING?
RZ ; YES, EXIT
INX H ; NO, BUMP STRING POINTER
JMP DSPLYI

* GET KETBOARE ENTRY OF HEX INTEGER *

* RETURN HL = 16 BIT BINARY DATA *

140

I4

ENTR LXI ,0000H ;INITIALIZE DATA
CALL CRLF ;SEND CARRIAGE RETURN &

; LINE FEED
MVI A,'>' ;SEND A CUE MARK
CALL USROUT
MVI C,4 ;CHAR. COUNTER

ENTRI CALL USRIN ;GET 1 CdARACTER
CPI CR ;CARRIAGE RETURN?
RZ ;YES, EXIT
CPI LF ;LINE FEED?
RZ ;YES, EXIT
CPI "A" ;IS IT 0-9?
JC ENTR15 ;YES
ANI orFH ;NO, FORCE LOWER CASE

ENTR15 DAD H ;SHIFT PREVIOUS DATA LEFT
DAD H ; 4 BITS
DAD a
DAD H
JC ENTR3 ;IF OVERFLOW, PRINT "?"
CPI 0" ;IS IT 0-F?
JC ENTR3 ;ILLEGAL CHARACTER
CPI lF +1
JNC ENTR3 ;ILLEGAL CHARACTER
CPI 'A" ;IS IT A-F?
JC ENTR2 ;NO, IT'S 0-9
ADI 9 ;ADD FUDGE FACTOR

ENTR2 ANI OFH ;ISOLATE 4 BITS
ORA L ;MERGE WITH PREVIOUS LATA
MOV L,A
DCR C ;COUNT CHARACTERS
RZ ;EXIT IF 4 RECEIVEr
JMP ENTRI ;GET ANOTHER CHARACTER

ENTR3 MVI A,'?" ;PRINT QUESTION MARK
CALL USROUT
JMP ENTR ; AND RESTART ENTRY

PRINT CARRIAGE RETURN AND LINE FEED *

CRLF MVI A,CR
CALL USROUT

MVI A,LF
CALL USROUT
RET

MISCELLANEOUS MESSAGES AND DATA AREA *

MEMA DB 8080 MEMORY TEST - VERSION 2.5',LF,CR
MEMB ZB 'ENTER ADIRESS OF FIRST MEMORY BYTE'

DB " TO TEST:',CR

141

MEMC DB 'ENTER ADDRESS OF LAST MEMORY BYTE"
LB ' TO TEST:',CR

MEMD DB 'ADDRESS=
MEMl LB '$$$$ PATTERN='
MEML2 LB '$$ CONTENTS='
MEMD3 DB XOR="
MEMr4 LB TYPE='
MEM5 LB ,CR
MEME DW 0 ;ERRORS THIS PASS
MEMF LW 0 ;PASS COUNT
MEMG LB •$$$$-$$$$ PASS:
MEMGl LB ' tt ERRORS:
MEMG2 LB cuM. ERRORS:
MEMG23 LB $$$$
MEMG25 DB CR 'AND:
MEMG3 LB O$R$$ OR:
MEMG4 DB
MEMI Dw 0 ;FIRST BYTE ADDRESS TO TEST
MEMJ LB OFEH ;BIT CROSSTALK PATTERN
MEMK LW -1 ;LOGICAL 'AND' OF FAILING

; ADDRESSES
MEML Dw 0 ;LOGICAL 'OR' OF FAILING

; ADDRESSES
MEMM DB LF, 'GOODBYE ,CR
MEMN LB I=ITEMIZE ERRORS,

B "T=PRINT ERROR TOTAL ONLY,
DB 'E=EXIT TEST',CR

MEMP LB 0 ;FLAG 1=ITEMIZE, O=TOTAL
MEMT LB 'END OF PROGRAM USED AS FIRST

DB 'ADDRESS TO TEST =
MEMT1 LB "$',R
MEMU LB 'ERROR: LAST BYTE ADDRESS LESS

DB 'THAN FIRST BYTE ADDRESS.',CR
MEMV LB LF

DB 'TO ABORT TEST PUSH ANY KEY'
DB CR

MEMX LW 0 ;CUMULATIVE ERROR COUNT

USRIN PUSH B ;GET INPUT FROM HOST CONSOLE
PUSH r
PUSH H
MvI C,1
CALL USRIO
POP H
POP D
POP B
RET

USROUT PUSH B ;SEND CHARACTER TO HOST
PUSH I ; CONSOLE

1.42

PUSH H
MVI C,2
CALL USRIO
POP H
POP D
POP B
RET

USRSTAT PUSH B ;SEE IF CHARACTER IS WAITING
PUSH r
PUSH H
MVI C,3
CALL USRIO
POP H
POP D
POP B
RET

BSOUT MVI A,BKSPACE ;PRINT A BACKSPACE
CALL USROUT
RET

STACK DS 64 ;SET UP FOR 32 LEVELS
TEND EQU $+2

END 100H

143

r- --

0-4.- = ~0C-
0-

C/))- .w04~
W. E 14 W.

WE- 0 :-

~~~ 00~~a

6M 04 E 9 4P /

o -on =.4c- E

xn 11%1 tn m )

31 = . :W 0 t0 044 C) -0 =) 4 0

OPAU N4-404w .

1-&4

w4 0

pA4 m z
0 '0 E-4

0-4 0 V
"C4 X.3

ad a4 a no "AE -
E- A 06 Ecl-4 Enn 0.
'A Zn 00 -j

= E-
tf)* P-4-.

o 4 C-~lZ14 z
Cn I 4 E4 '4-4

CA- Q UZ 1"' Z30 oE

1444



E-4q

0T

0- rE4 S

E- .4 z

OWE 0 0

>4 14 .4 W) E- r.V
.4- =-o. .4 =

E-4~ 50 C-

E- a -

.44. = u - 0 2

E i-.4 ~ Ca b-4 E4 U

E 1C 10 'a - c !' .4 t

94
z E 0- 44U 96-4 ;0 -

06 . E--4 0~u E-4 ZZ 13 E-a. P4E A04=000 00 -- W

Q =Cla =- .4 aq PR = - u $
Eoa .4 u m .-l PQlCI

)~ ea~ e-9-oz 4
c NO. 0. tnI - -6-

as 04 E- W 0
6 .4 z O4 ClI 4CAlEP4 al V)
ad - t2 u - 41

z z W "ZE-4 Z Z - W 0 W alP"

-0 Er- 64 .4 Ao -4 =~. W 0dE-

- ~ ~ =Z.9. Q0 a~F.a uu -

P- W. 0 Zu E-4 W-. .4 0-

C/) 0 4 [64 - .0 Cal Ca .4 E cr
- 4c 1.-4 En *-4C~t E- 0
I- cn ma 0a- nC t i

Cn 404 A5-404 6'4 UCa U CAMM0

W ~ ~ ad. C4 04o

~Zc2Z~4Zf~Ca -4l W
ci, 0 .U~~ad

.14

WCa



24 0 - W: 0
4c -4 r .

fr4 ~ 9 1 ~-4Z~4

P-4 C 4 04 E

(n = 0. 94Z PnOr 9 W

;W;Q 94 a~O~ . 0W-. -4 W14

(nI m:~- Gi 0- ra E-4 WJ~

E- ;P q;~.'- ;P4P 14P -
rma- a- P- n lP

to~ 74 04 - E-4 74 = 6.QZ 4 w
-404 ~ W " N .4 .4s 4 O 74

7L .4 oo 0i2444-4 0 E-4Z
0 0)1 07474 - - W

x4 pa F-4 .44t

U2 a; E- 0.4Ga4
<4I-7 Ia. " P4 4

En 0 44C 4E4

.4 01 1. V

~.. lb0 w P4 P- z4;4* : Q Op

04 rAV

~r ~ Pd 4 D402

4 a2

;.4 m E-4



E-1 U

E- z E-
>- .4 W -

c- r-12 -

"4 w
a dc PP
A. 0 P pa

o0=04 0

.4

-P 0..

Ad> >4 0
U

04

E-1

0 P4

0..

1 47



BIBLIOGRAPHY

Barden, William Jr., The Z8a Microcomputer Handbook, Howard
W. Sams & Co., Inc., 1979.

LIGITAL RESEARCH CORPORATION, CP/M and MP/M Users Manuals,

1980.

PRO-LOG CORPORATION, 7304 Dual Uart Card Users Manual, 1960.

PRO-LOG CORPORATION, 7701 16K Static memory Card Users
Manual, 198e.

PRO-LOG CORPORATION, 7903 Processor Card (Z80) Users Manual,
1980.

PRO-LOG CORPORATION, Series 7000 STr BUS Technical Manual
and Product Catalog1 March 1981.

Titus, Jonathan A. and others, The 80SZA Bugbook, Ist ed.,
Howard W. Sams & Co., Inc., 1977.

Titus, Jonathan A. and others, 80E0/8085 Software Lesign -

Book 1, Ist ed., Howard W. Sams & Co., Inc., 1980.

Titus, Jonathan A. and others, 80S0/8065 Software resign -

Book 2, 1st ed., Howard W. Sams & Co., Inc., 1979.

Titus, Jonathan A. and others, Interfacing and Scientific
Lata Communications Experiments, 1st ed., Howard W. Sams &
Co., Inc., 1980.

Zaks, Rodnay, iow to Program the Z80, 3rd ed., SYBEX Inc.,
1979.

11 8



INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22314

2. Library, Code 0142 2
Naval Postgraduate School
Monterey, California 93940

3. Department Chairman, Code 62 2
Department of Electrical Engineering
Naval Postgraduate School
Monterey, California 93940

4. Associate Professor M. L. Cotton, Code 62Co
Department of Electrical Engineering
Naval Postgraduate School
Monterey, California 93940

5. Professor R. Panholzer, Code 62Pz
Department of Electrical Engineering
Naval Postgraduate School
Monterey, California 93940

6. LT Stephen M. Hughes, USN
1416 Sir Richard Road
Virginia Beach, Virginia 23455

149




